Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-08T16:27:21.014Z Has data issue: false hasContentIssue false

Cryogenic specimens for nanoscale characterization of solid–liquid interfaces

Published online by Cambridge University Press:  10 December 2019

Michael J. Zachman
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, USA; [email protected]
Niels de Jonge
Affiliation:
INM–Leibniz Institute for New Materials, Germany; [email protected]
Robert Fischer
Affiliation:
The University of Oregon, USA; [email protected]
Katherine L. Jungjohann
Affiliation:
Center for Integrated Nanotechnologies, Sandia National Laboratories, USA; [email protected]
Daniel E. Perea
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, USA; [email protected]
Get access

Abstract

New cryogenic characterization techniques for exploring the nanoscale structure and chemistry of intact solid–liquid interfaces have recently been developed. These techniques provide high-resolution information about buried interfaces from large samples or devices that cannot be obtained by other means. These advancements were enabled by the development of instrumentation for cryogenic focused ion beam liftout, which allows intact solid–liquid interfaces to be extracted from large samples and thinned to electron-transparent thicknesses for characterization by cryogenic scanning transmission electron microscopy or atom probe tomography. Future implementation of these techniques will complement current strides in imaging of materials in fluid environments by in situ liquid-phase electron microscopy, providing a more complete understanding of the morphology, surface chemistry, and dynamic processes that occur at solid–liquid interfaces.

Type
Cryogenic Electron Microscopy in Materials Science
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dubochet, J., Lepault, J., J. Phys. Colloq. 45, C785 (1984).CrossRefGoogle Scholar
Dubochet, J., Lepault, J., Freeman, R., Berriman, J., Homo, J.C., J. Microsc. 128, 219 (1982).CrossRefGoogle Scholar
Dubochet, J., McDowall, A., J. Microsc. 124, 3 (1981).CrossRefGoogle Scholar
Heide, H., Ultramicroscopy 6, 115 (1981).CrossRefGoogle Scholar
Henderson, R., Proc. R. Soc. Lond. A 241, 6 (1990).Google Scholar
McDowall, A., Chang, J.-J., Freeman, R., Lapault, J., Walter, C.A., Dubochet, J., J. Microsc. 131, 1 (1983).CrossRefGoogle Scholar
Varriano‐Marston, E., Gordon, J., Davis, E., Hutchinson, T., J. Microsc. 109, 193 (1977).CrossRefGoogle Scholar
Choudhury, S., Wan, C.T.-C., Al Sadat, W.I., Tu, Z., Lau, S., Zachman, M.J., Kourkoutis, L.F., Archer, L.A., Sci. Adv. 3, e1602809 (2017).CrossRefGoogle Scholar
Lin, A.Y., Müller, A., Yu, X.-x., Minor, A.M., Marks, L.D., Ultramicroscopy 200, 6 (2019).CrossRefGoogle Scholar
Prasad, B., Pfanzelt, G., Fillis-Tsirakis, E., Zachman, M.J., Kourkoutis, L.F., Mannhart, J., Adv. Mater. 30, 1802598 (2018).CrossRefGoogle Scholar
Schreiber, D.K., Perea, D.E., Ryan, J.V., Evans, J.E., Vienna, J.D., Ultramicroscopy 194, 89 (2018).CrossRefGoogle Scholar
Zachman, M.J., Asenath-Smith, E., Estroff, L.A., Kourkoutis, L.F., Microsc. Microanal. 22, 1338 (2016).CrossRefGoogle Scholar
Zachman, M.J., Tu, Z., Choudhury, S., Archer, L.A., Kourkoutis, L.F., Nature 560, 345 (2018).CrossRefGoogle Scholar
Antoniou, N., Graham, A., Hartfield, C., Amador, G., Conf. Proc. 38th Int. Symp. Test. Fail. Anal. (ISTFA 2012) (ASM International, Materials Park, OH, 2012), pp. 399405.Google Scholar
Mahamid, J., Schampers, R., Persoon, H., Hyman, A.A., Baumeister, W., Plitzko, J.M., J. Struct. Biol. 192, 262 (2015).CrossRefGoogle Scholar
Parmenter, C.D., Fay, M.W., Hartfield, C., Eltaher, H.M., Microsc. Res. Tech. 79, 298 (2016).CrossRefGoogle Scholar
Rubino, S., Akhtar, S., Melin, P., Searle, A., Spellward, P., Leifer, K., J. Struct. Biol. 180, 572 (2012).CrossRefGoogle Scholar
Chee, S.W., Pratt, S.H., Hattar, K., Duquette, D., Ross, F.M., Hull, R., Chem. Commun. 51, 168171 (2015).CrossRefGoogle Scholar
Harrison, K.L., Zavadil, K.R., Hahn, N.T., Meng, X., Elam, J.W., Leenheer, A., Zhang, J.-G., Jungjohann, K.L., ACS Nano 11, 11194 (2017).CrossRefGoogle Scholar
Hayden, S.C., Chisholm, C., Grudt, R.O., Aguiar, J.A., Mook, W.M., Kotula, P.G., Pilyugina, T.S., Bufford, D.C., Hattar, K., Kucharski, T.J., Taie, I.M., Ostraat, M.L., Jungjohann, K.L., NPJ Mater. Degrad. 3, 17 (2019).CrossRefGoogle Scholar
Leenheer, A.J., Jungjohann, K.L., Zavadil, K.R., Harris, C.T., ACS Nano 10, 5670 (2016).CrossRefGoogle Scholar
Leenheer, A.J., Jungjohann, K.L., Zavadil, K.R., Sullivan, J.P., Harris, C.T., ACS Nano 9, 4379 (2015).CrossRefGoogle Scholar
Mehdi, B.L., Qian, J., Nasybulin, E., Park, C., Welch, D.A., Faller, R., Mehta, H., Henderson, W.A., Xu, W., Wang, C.M., Evans, J.E., Liu, J., Zhang, J.-G., Mueller, K.T., Browning, N.D., Nano Lett . 15, 2168 (2015).CrossRefGoogle Scholar
Ross, F.M., Liquid Cell Electron Microscopy (Cambridge University Press, Cambridge, UK, 2016).CrossRefGoogle Scholar
Ross, F.M., Wang, C., de Jonge, N., MRS Bull . 41, 791 (2016).CrossRefGoogle Scholar
Williamson, M., Tromp, R., Vereecken, P., Hull, R., Ross, F., Nat. Mater. 2, 532 (2003).CrossRefGoogle Scholar
Zheng, H., Smith, R.K., Jun, Y.W., Kisielowski, C., Dahmen, U., Alivisatos, A.P., Science 324, 1309 (2009).CrossRefGoogle Scholar
Schilling, S., Janssen, A., Zaluzec, N.J., Burke, M.G., Microsc. Microanal. 23, 741 (2017).CrossRefGoogle Scholar
Heymann, J.A., Hayles, H., Gestmann, I., Giannuzzi, L.A., Lich, B., Subramaniam, S., J. Struct. Biol. 155, 63 (2006).CrossRefGoogle Scholar
Marko, M., Hsieh, C., Moberlychan, W., Mannella, C., Frank, J., J. Microsc. 222, 42 (2006).CrossRefGoogle Scholar
Marko, M., Hsieh, C., Schalek, R., Frank, J., Mannella, C., Nat. Methods 4, 215 (2007).CrossRefGoogle Scholar
Mulders, H., GIT Imaging Microsc . 2, 8 (2003).Google Scholar
Hayles, M.F., de Winter, D.A., Schneijdenberg, C.T., Meeldijk, J.D., Luecken, U., Persoon, H., de Water, J., de Jong, F., Humbel, B.M., Verkleij, A.J., J. Struct. Biol. 172, 180 (2010).CrossRefGoogle Scholar
Comes, R.B., Perea, D.E., Spurgeon, S.R., Adv. Mater. Interfaces 4, 1700396 (2017).CrossRefGoogle Scholar
Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F., Gorman, B., Ultramicroscopy 107, 131 (2007).CrossRefGoogle Scholar
Devaraj, A., Perea, D.E., Liu, J., Gordon, L.M., Prosa, T.J., Parikh, P., Diercks, D.R., Meher, S., Kolli, R.P., Meng, Y.S., Thevuthasan, S., Int. Mater. Rev. 63, 68 (2018).CrossRefGoogle Scholar
Marquis, E.A., Bachhav, M., Chen, Y., Dong, Y., Gordon, L.M., McFarland, A., Curr. Opin. Solid State Mater. Sci. 17, 217 (2013).CrossRefGoogle Scholar
Botton, G.A., MRS Bull . 37, 21 (2012).CrossRefGoogle Scholar
Muller, D.A., Nat. Mater. 8, 263 (2009).CrossRefGoogle Scholar
Mundy, J.A., Hikita, Y., Hidaka, T., Yajima, T., Higuchi, T., Hwang, H.Y., Muller, D.A., Kourkoutis, L.F., Nat. Commun. 5, 3464 (2014).CrossRefGoogle Scholar
Metzger, M., Strehle, B., Solchenbach, S., Gasteiger, H.A., J. Electrochem. Soc. 163, A798 (2016).CrossRefGoogle Scholar
Szczȩśniak, M.g.M., Ratajczak, H., J. Chem. Phys. 67, 5400 (1977).CrossRefGoogle Scholar
Jiang, Y., Chen, Z., Han, Y., Deb, P., Gao, H., Xie, S., Purohit, P., Tate, M.W., Park, J., Gruner, S.M., Elser, V., Muller, D.A., Nature 559, 343 (2018).CrossRefGoogle Scholar
Lozano, J.G., Martinez, G.T., Jin, L., Nellist, P.D., Bruce, P.G., Nano Lett . 18, 6850 (2018).CrossRefGoogle Scholar
Baek, D.J., Goodge, B.H., Lu, D., Hikita, Y., Hwang, H.Y., Kourkoutis, L.F., Microsc. Microanal. 23, 366 (2017).CrossRefGoogle Scholar
Hart, J.L., Lang, A.C., Leff, A.C., Longo, P., Trevor, C., Twesten, R.D., Taheri, M.L., Sci. Rep. 7, 8243 (2017).CrossRefGoogle Scholar
de Jonge, N., Ross, F.M., Nat. Nanotechnol. 6, 695 (2011).CrossRefGoogle Scholar
Parsons, D., Matricardi, V., Moretz, R., Turner, J., in Advances in Biological and Medical Physics (Elsevier, Amsterdam, The Netherlands, 1974), vol. 15, pp. 161270.Google Scholar
Ruska, E., Kolloid Z . 100, 212 (1942).CrossRefGoogle Scholar
Danilatos, G.D., in Advances in Electronics and Electron Physics (Elsevier, Amsterdam, The Netherlands, 1988), vol. 71, pp. 109250.Google Scholar
Wang, C.-M., J. Mater. Res. 30, 326 (2015).CrossRefGoogle Scholar
de Jonge, N., Peckys, D.B., Kremers, G., Piston, D., Proc. Natl. Acad. Sci. U.S.A. 106, 21592164 (2009).CrossRefGoogle Scholar
Textor, M., de Jonge, N., Nano Lett . 18, 3313 (2018).CrossRefGoogle Scholar
Yuk, J.M., Park, J., Ercius, P., Kim, K., Hellenbusch, D.J., Crommie, M.F., Lee, J.Y., Zettl, A., Alivisatos, A.P., Science 336, 61 (2012).CrossRefGoogle Scholar
Keskin, S., de Jonge, N., Nano Lett . 18, 7435 (2018).CrossRefGoogle Scholar
Mirsaidov, U.M., Zheng, H., Casana, Y., Matsudaira, P., Biophys. J. 102, L15 (2012).CrossRefGoogle Scholar
Schneider, N., Norton, M.M., Mendel, B.J., Grogan, J.M., Ross, F.M., Bau, H.H., J. Phys. Chem. C 118, 22373 (2015).CrossRefGoogle Scholar
Woehl, T.J., Jungjohann, K.L., Evans, J.E., Arslan, I., Ristenpart, W.D., Browning, N.D., Ultramicroscopy 127, 53 (2013).CrossRefGoogle Scholar
Ahmad, N., Wang, G., Nelayah, J., Ricolleau, C., Alloyeau, D., Nano Lett . 17, 4194 (2017).CrossRefGoogle Scholar
Evans, J.E., Jungjohann, K.L., Browning, N.D., Arslan, I., Nano Lett . 11, 2809 (2011).CrossRefGoogle Scholar
Kim, J., Ou, Z., Jones, M.R., Song, X., Chen, Q., Nat. Commun. 8, 761 (2017).CrossRefGoogle Scholar
Verch, A., Pfaff, M., de Jonge, N., Langmuir 31, 6956 (2015).CrossRefGoogle Scholar
Smeets, P.J., Cho, K.R., Kempen, R.G., Sommerdijk, N.A., De Yoreo, J.J., Nat. Mater. 14, 394 (2015).CrossRefGoogle Scholar
Peckys, D.B., Korf, U., de Jonge, N., Sci. Adv. 1, e1500165 (2015).CrossRefGoogle Scholar
Peckys, D.B., Korf, U., Wiemann, S., De Jonge, N., Mol. Biol. Cell 28, 3193 (2017).CrossRefGoogle Scholar
de Jonge, N., Houben, L., Dunin-Borkowski, R.E., Ross, F.M., Nat. Rev. Mater. 4, 61 (2018).CrossRefGoogle Scholar