Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-20T18:08:15.356Z Has data issue: false hasContentIssue false

Copper-Based Metallization for ULSI Applications

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Multilevel metallization of very large-scale integrated (VLSI) circuits has become an area of intense research interest as devices are scaled down in order to increase circuit density. As device dimensions approach the submicron regime, reliability becomes more of an issue. Metallization generally requires good conductivity, electromigration resistance, controllable contact performance, corrosion resistance, adherence, thermal stability, bondability, ability to be patterned into a desirable geometry, and economic feasibility.

Aluminum and its alloys have been commonly used as the main metallization materials because they meet most of the metallization requirements for microelectronic devices. Aluminum, however, suffers from major limitations, such as elec-tromigration and stress-voiding induced open-circuit failure. For the development of ultralarge-scale integration (ULSI) for fast-switching-speed devices, the electrical resistivities of aluminum and its alloys are not low enough. As the minimum geometry is scaled down to one-quarter micron, aluminum and its alloys potentially will be replaced by other materials such as Cu, Au, or superconductors for on-chip interconnection.

Type
Copper Metallization
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)