Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T13:12:23.588Z Has data issue: false hasContentIssue false

The Coolidge Process for Making Tungsten Ductile: The Foundation of Incandescent Lighting

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Try to imagine a world without incandescent lamps. We light our homes with 20-200-watt lamps, which are routinely purchased in local stores. These lamps are made at the rate of millions per week and their manufacture represents a large global industry. The consumer expects them to last approximately 1,000 hours and to be energy efficient and inexpensive.

Many types of incandescent lamps exist. Figure 1 shows several examples. The most common types are A-line (the general household lamp), automotive lamps, and reflector lamps for floodlight or projector applications. We also have many thousands of specialty lamps, which have a broad range of applications, such as audio-visual projectors, fiberoptic systems, video-camera lights, airport-runway markers, photoprinters, medical/scientific instruments, and stage/studio systems. They can have power ratings from a few watts to several thousand watts, but they all have at least one feature in common. They contain a filament made of tungsten wire. The diameter of the wire will vary, depending on the power rating and application of the lamp, but for most common household lamps it is less than 100 μm.

Type
Links of Science & Technology
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Coolidge, W.D., J. Am. Inst. Elec. Engrs. 29 (1909) p. 953; U.S. Patent No. 1,226,470 (1917).Google Scholar
2.Keating, Paul W., Lamps for a Brighter America: A History of the General Electric Lamp Business (McGraw Hill Book Co., New York, 1954).Google Scholar
3.Liebhafsky, H.A., William David Coolidgc, A Centenarian and His Work (John Wiley and Sons, New York, 1974).Google Scholar
4.Jenny, K. and Gaspar, F., The History of Tungsram 1896-1945 (Gutenberg Printing House, Budapest, 1990).Google Scholar
5.Agte, C. and Vacek, J., Tungsten and Molybdenum (NASA, Washington, DC, 1963).Google Scholar
6.Yih, S.W.H. and Wang, C.T., Tungsten-Sources, Metallurgy, Properties, and Application (Plenum Press, New York, 1981).Google Scholar
7.Smithells, C.J., Tungsten (Chemical Publishing Co., New York, 1953).Google Scholar
8.Just, A. and Hannamann, F., British Patent No. 23,899 (1904).Google Scholar
9.Just, A. and Hannamann, F., British Patent No. 11,949 (1905).Google Scholar
10.Briant, C.L., Mater. Sci. Technol. 7 (1991) p. 739.CrossRefGoogle Scholar
11.Pacz, A., U.S. Patent No. 1,410,499 (1922).Google Scholar
12.Langmuir, I., Phys. Rev. 2 (1912) p. 39.Google Scholar
13.Zubler, E.G. and Mosby, F.A., Illum. Eng. 734 (1959).Google Scholar
14.Walter, J.L., Trans. Metall Soc. AIME 234 (1967) p. 272.Google Scholar
15.Das, G., Metall. Trans. 2 (1971) p. 3,239.CrossRefGoogle Scholar
16.Snow, D.B., Metall. Trans. 5 (1974) p. 2,375.CrossRefGoogle Scholar
17.Snow, D.B., Metall. Trans. 3 (1972) p. 2,553.CrossRefGoogle Scholar
18.Snow, D.B., Metall. Trans. A 7A (1976) p. 783.CrossRefGoogle Scholar
19.Moon, D.M. and Koo, R.C., Metall. Trans. 2 (1971) p. 2,115.CrossRefGoogle Scholar
20.Walter, J.L. and Briant, C.L., J. Mater. Res. 5 (1990) p. 2,004.CrossRefGoogle Scholar
21.Neugebauer, J., in The Metallurgy of Doped/Non-Sag Tungsten, edited by Pink, E. and Bartha, L. (Elsevier, New York, 1989) p. 25.Google Scholar
22.Zeiler, B., Schubert, W.D., and Lux, B., Refractory Met. Hard Mater. 109 (1991) p. 91.CrossRefGoogle Scholar
23.Zeiler, B., Schubert, W.D., and Lux, B., Reffactory Met. Hard Mater. 10 (1991) p. 83.CrossRefGoogle Scholar
24.Bewlay, B.P. and Lou, K.A., Tungsten and Tungsten Alloys — Recent Advances (TMS Symposium, New Orleans, February 1991) p. 87.Google Scholar
25.Bewlay, B.P., Lewis, N., and Lou, K.A., Met. Trans. 22A (1991) p. 2,153.CrossRefGoogle Scholar
26.Horacsek, O., in The Metallurgy of Doped/Non-Sag Tungsten, edited by Pink, E. and Bartha, L. (Elsevier, New York, 1989) p. 175.Google Scholar
27.Walter, J.L., Lou, K.A., and Vukcevich, M.R., in Proc. 12th Int. Plansee Seminar (Reute, Austria, 1989) p. 493.Google Scholar
28.Nagy, G. and Uray, L., in Proc. 13th Int. Plansee Seminar (Reute, Austria, 1993) p. 363.Google Scholar
29.Bewlay, B.P., in Proc. 5th Int. Tungsten Symp., Budapest (MPR Publishing Service Ltd., Shrewsbury, England, 1991) p. 227.Google Scholar
30.Briant, C.L., “Tungsten: 1990,” Proc. 5th Int. Tungsten Symp. (MPR Publishing Service Ltd., Shrewsbury, England, 1991) p. 169.Google Scholar
31.Briant, C.L., Metall. Trans. A 24A (1993) p. 1,073.CrossRefGoogle Scholar
32.Briant, C.L., Zaverl, F., and Hall, E.L., Mater. Sci. Technol. 7 (1991) p. 923.CrossRefGoogle Scholar
33.Briant, C.L., Metall. Trans. A 20A (1989) p. 179.CrossRefGoogle Scholar
34.Schade, P., Planseeberichte für Pulvermet., 24 (1976) p. 243.Google Scholar
35.Vukcevich, M.R., “Tungsten: 1990,” Proc. 5th Int. Tungsten Symp. (MPR Publishing Service Ltd., Shrewsbury, England, 1991) p. 157.Google Scholar
36.Briant, C.L. and Hall, E.L., Metall. Trans. A 20A (1989) p. 1,669.CrossRefGoogle Scholar
37.Pink, E. and Bartha, L., The Metallurgy of Doped/Non-Sag Tungsten (Elsevier, New York, 1989).Google Scholar
38.Mullendore, J.A., in The Metallurgy of Doped/Non-Sag Tungsten, edited by Pink, E. and Bartha, L. (Elsevier, New York, 1989) p. 69.Google Scholar
39.Jones, D.J., The Metallurgist and Mater. Technologist 5 (1973) p. 503.Google Scholar
40.Browning, P.F., Briant, C.L., and Knudsen, B.A., High Temp. Mater, and Processes 13 (1994) p. 97.CrossRefGoogle Scholar
41.Yamamoto, H., in The Metallurgy of Doped/Non-Sag Tungsten, edited by Pink, E. and Bartha, L. (Elsevier, New York, 1989) p. 39.Google Scholar
42.Yamazaki, S., in The Metallurgy of Doped/Non-Sag Tungsten, edited by Pink, E. and Bartha, L. (Elsevier, New York, 1989) p. 52.Google Scholar
43.Moon, D.M., Stickler, R., and Wolfe, A.L., in Proc. 6th Int. Plansee Seminar (Metallwerk Plansee GMBH, Reutte, Austria, 1968) p. 67.Google Scholar
44.Sell, H.G., Stein, D.F., Stickler, R., Joshi, A., and Berkey, E., J. Inst. Met. 100 (1972) p. 275.Google Scholar
45.Martens, W.A.A.A. and Brulez, P.J.F., in Proc. 12th Int. Plansee Seminar (Reute, Austria, 1989) p. 523.Google Scholar
46.Meszaros, I., Csako, J., Nagy, G., and Ferenczi, G., in Proc. 12th Int. Plansee Seminar (Reute, Austria, 1989) p. 539.Google Scholar
47.Briant, C.L., Zaverl, F., and Carter, W.T., Acta Metall. 42 (1994) p. 2,811.CrossRefGoogle Scholar
48.Aust, K.T., in The Art and Science of Growing Crystals, edited by Gilman, J.J. (John Wiley and Sons, New York, 1963), p. 452.Google Scholar
49.Thompson-Russell, K.C., Planseeberichte für Pulvermet. 22 (1974) p. 155.Google Scholar
50.Rayleigh, Lord, Proc. London Math. Soc. 10 (1878)p. 4.CrossRefGoogle Scholar
51.Gaal, I., in The Metallurgy of Doped/Non-Sag Tungsten, edited by Pink, E. and Bartha, L. (Elsevier, New York, 1989) p. 141.Google Scholar
52.Nagy, A., private communication, 1994.Google Scholar
53.Briant, C.L. and Walter, J.L., Acta Metall. 36 (1988) p. 2,503.CrossRefGoogle Scholar
54.Zilberstein, G. and Kim, H.J., in Proc. 6th Int. Symp. Sci. Tech. of Light Sources, edited by Bartha, L. and Kedves, F.J. (Budapest, 1992) p. 169.Google Scholar
55.Garbe, S. and Hanloh, S., Philips J. Res. 38 (1983) p. 248.Google Scholar
56.Pugh, J.W. and Bly, D.L., U.S. Patent No. 5,072,147.Google Scholar
57.Nagy, A.T., J. of Mcch. Working Tech. 12 (1985) p. 67.CrossRefGoogle Scholar
58.Nagy, A.T., J. of Mech. Working Tech. 8 (1983) p. 293.CrossRefGoogle Scholar