Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T14:08:39.507Z Has data issue: false hasContentIssue false

Continuous Phase Diagramming of Epitaxial Films

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

High-throughput and systematic studies of complex materials systems using the approach of “continuous phase diagramming” (CPD) are described in this article. The discussions focus on the techniques of epitaxial film synthesis of CPD and mapping physical and structural properties, using two different material systems as examples: doped perovskite manganese oxides and magnetic alloys. In doped perovskite manganese oxides, a highly correlated system, mapping the optical, electrical, and magnetic properties, reveals surprising evidence of electronic phase transitions that correlate with the low-temperature magnetic order. In magnetic alloys, application of CPD, particularly using real-time characterization during epitaxial growth, makes it possible to examine structure–property relations systematically.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chang, H., Takeuchi, I., and Xiang, X.-D., Appl. Phys. Lett. 74 (1999) p. 1165.CrossRefGoogle Scholar
2.Yoo, Y.K., Duewer, F.W., Yang, H., Yi, D., Li, J.-W., and Xiang, X.-D., Nature 406 (2000) p. 704.CrossRefGoogle Scholar
3.Fukumura, T., Ohtani, M., Kawasaki, M., Okimoto, Y., Kageyama, T., Koida, T., Hasegawa, T., Tokura, Y., and Koinuma, H., Appl. Phys. Lett. 77 (2000) p. 3426.CrossRefGoogle Scholar
4.Yoo, Y.K., Duewer, F.W., Fukumura, T., Yang, H., Dong, Y., Chang, H., Hasegawa, T., Kawasaki, M., Koinuma, H., and Xiang, X.-D., Phys. Rev. B 63 22442 (2001).CrossRefGoogle Scholar
5.Yoo, Y.K., Ohnishi, T., Wang, G., Duewer, F.W., Xiang, X.-D., Chu, Y.-S., Mancini, D.C., Li, Y.-Q., and O'Handley, R.C., Intermetallics 9 (2001) p. 541.CrossRefGoogle Scholar
6.Yoo, Y.K., and Xiang, X.-D., J. Phys.: Condens. Matter 15 (2002) p. R49.Google Scholar
7.Kawasaki, M., Takahashi, K., Maeda, T., Tsuchiya, R., Shinohara, M., Ishiyama, O., Yonezawa, T., Yoshimoto, M., and Koinuma, H., Science 266 (1994) p. 1540.CrossRefGoogle Scholar
8.Tsui, F. and Ryan, P.A., Appl. Surf. Sci. (2002) in press;Google Scholar
Tsui, F., He, L., and Ma, L., in Combinatorial and Artificial Intelligence Methods in Materials Science, edited by Takeuchi, I., Buelens, C., Koinuma, H., Amis, E.J., Newsam, J.M., and Wille, L.T. (Mater. Res. Soc. Symp. Proc. 700, Warrendale, PA, 2002) in press.Google Scholar
9.Bozovic, I., IEEE Trans. Appl. Supercond. 11 (2001) p. 2686.CrossRefGoogle Scholar
10.Tsui, F. and Flynn, C.P., Phys. Rev. Lett. 71 (1993) p. 1462.CrossRefGoogle Scholar
11.Gao, C., Wei, T., Duewer, F., Lu, Y., and Xiang, X.-D., Appl. Phys. Lett. 71 (1997) p. 1872.CrossRefGoogle Scholar
12.Gao, C. and Xiang, X.-D., Rev. Sci. Instrum. 69 (1998) p. 3846.CrossRefGoogle Scholar
13.Gao, C., Duewer, F., and Xiang, X.-D., Appl. Phys. Lett. 75 (1999) p. 3005.CrossRefGoogle Scholar
14.Morooka, T., Nakayama, S., Odawara, A., Ikeda, M., Tanaka, S., and Chinone, K., IEEE Trans. Appl. Supercond. 5 (1999) p. 3491.CrossRefGoogle Scholar
15.Tokura, Y. and Nagaosa, N., Science 288 (2000) p. 462.CrossRefGoogle Scholar
16.Maezono, R., Ishihara, S., and Nagaosa, N., Phys. Rev. B 58 (1998) p. 11583.CrossRefGoogle Scholar
17.Kivelson, S.A., Fradkin, E., and Emery, V.J., Nature 393 (1998) p. 550.CrossRefGoogle Scholar
18.Omote, K., Kikuchi, T., Harada, J., Kawasaki, M., Ohtomo, A., Ohtani, M., Ohnishi, T., Komiyama, D., and Koinuma, H., in Proc. SPIE, Vol. 3941 (SPIE— The International Society for Optical Engineering, Bellingham, WA, 2000) p. 84.Google Scholar
19.Yensen, T.D., J. Am. Inst. Electr. Eng. 39 (1920) p. 396.CrossRefGoogle Scholar
20.Dumpich, G., Kästner, J., Kirschbaum, U., Mühlbauer, H., Liang, J., Lübeck, T., and Wassermann, E.F., Phys. Rev. B. 46 (1992) p. 9258.CrossRefGoogle Scholar
21.Pearson, W.B., in A Handbook of Lattice Spacing and Structures of Metal Alloys, Chapter 11, edited by Burton, W. (Pergamon Press, New York, 1958).CrossRefGoogle Scholar
22.O'Handley, R.C., in Modern Magnetic Materials, Chapter 7 (John Wiley & Sons, New York, 2000) p. 220.Google Scholar
23.Warren, B.E. and Averbach, B.L., J. Appl. Phys. 21 (1950) p. 595.CrossRefGoogle Scholar
24.Masumoto, H., Science Reports, Tohoku Imperial University 18 (Tohoku Imperial University, Japan, 1929) p. 195.Google Scholar
25.Schumann, F.O., Willis, R.F., Goodman, K.G., and Tobin, J.G., Phys. Rev. Lett. 79 (1997) p. 5166.CrossRefGoogle Scholar
26.Freeland, J.W., Grigorov, I.L., and Walker, J.C., Phys. Rev. B 57 (1998) p. 80.CrossRefGoogle Scholar
27.Liu, Z.Q. and Bader, S.D., Rev. Sci. Instrum. 71 (2000) p. 1243.Google Scholar
28.Ishida, S., Fujii, S., Nagayoshi, H., and Asano, S., Physica B 254 (1998) p. 157.CrossRefGoogle Scholar