Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T00:01:47.807Z Has data issue: false hasContentIssue false

Computational modeling of the mechanics of hierarchical materials

Published online by Cambridge University Press:  08 September 2016

Stefano Signetti
Affiliation:
Laboratory of Bio-Inspired & Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Italy; [email protected]
Federico Bosia
Affiliation:
Department of Physics and Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, Italy; [email protected]
Nicola M. Pugno
Affiliation:
Laboratory of Bio-Inspired & Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, and Center for Materials and Microsystems, Fondazione Bruno Kessler, Italy; and School of Engineering and Materials Science, Queen Mary University of London, UK; [email protected]
Get access

Abstract

Structural hierarchy coupled with material heterogeneity is often identified in natural materials, from the nano- to the macroscale. It combines disparate mechanical properties, such as strength and toughness, and multifunctionality, such as smart adhesion, water repellence, self-cleaning, and self-healing. Hierarchical architectures can be employed in synthetic bioinspired structured materials, also adopting constituents with superior mechanical properties, such as carbon nanotubes or graphene. Advanced computational modeling is essential to understand the complex mechanisms that couple material, structural, and topological hierarchy, merging phenomena of different nature, size, and time scales. Numerical modeling also allows extensive parametric studies for the optimization of material properties and arrangement, avoiding time-consuming and complex experimental trials, and providing guidance in the fabrication of novel advanced materials. Here, we review some of the most promising approaches, with a focus on the methods developed by our group.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Liu, Z.Q., Jiao, D., Meyers, M.A., Zhang, Z.F., Acta Biomater. 17, 137 (2015).Google Scholar
Yao, H., Gao, H., J. Mech. Phys. Solids 54, 1120 (2006).Google Scholar
Killian, C.E., Metzler, R.A., Gong, Y., Churchill, T.H., Olson, I.C., Trubetskoy, V., Christensen, M.B., Fournelle, J.H., De Carlo, F., Cohen, S., Mahamid, J., Scholl, A., Young, A., Doran, A., Wilt, F.H., Coppersmith, S.N., Gilbert, P.U.P.A., Adv. Funct. Mater. 21, 682 (2011).Google Scholar
Tian, Y., Jiang, L., MRS Bull. 40, 155 (2015).Google Scholar
Meyers, M.A., Chen, P.Y., Lin, A.Y.M., Seki, Y., Prog. Mater. Sci. 53, 1 (2008).Google Scholar
Ji, B.H., Gao, H.J., J. Mech. Phys. Solids 52, 1963 (2004).Google Scholar
Cranford, S.W., Tarakanova, A., Pugno, N.M., Buehler, M.J., Nature 482, 72 (2012).Google Scholar
Gupta, H.S., Seto, J., Wagermaier, W., Zaslansky, P., Boesecke, P., Fratzl, P., Proc. Natl. Acad. Sci. U.S.A. 103, 17741 (2006).Google Scholar
Cranford, S.W., Biomateriomics, 1st ed. (Springer, New York, 2012).Google Scholar
Cranford, S.W., de Boer, J., van Blitterswijk, C., Buehler, M.J., Adv. Mater. 25, 802 (2013).Google Scholar
Olson, G.B., Science 277, 1237 (1997).Google Scholar
Mishnaevsky, L., Rev. Adv. Mater. Sci. 30, 60 (2012).Google Scholar
Mishnaevsky, L., Dai, G., Compos. Struct. 117, 156 (2014).Google Scholar
Pradhan, S., Hansen, A., Chakrabarti, B.K., Rev. Mod. Phys. 82, 499 (2010).Google Scholar
Pugno, N.M., Bosia, F., Abdalrahman, T., Phys. Rev. E 85, 011903 (2012).Google Scholar
Mishnaevsky, L., Compos. Sci. Technol. 71, 450 (2011).Google Scholar
Bosia, F., Abdalrahman, T., Pugno, N.M., Nanoscale 4, 1200 (2012).Google Scholar
Pugno, N.M., Bosia, F., Carpinteri, A., Small 4, 1044 (2008).Google Scholar
Gavin, A.B., Christopher, M.C., Douglas, J.C., Model. Simul. Mater. Sci. Eng. 9, 485 (2001).Google Scholar
Zapperi, S., Vespignani, A., Stanley, H.E., Nature 388, 658 (1997).Google Scholar
Brely, L., Bosia, F., Pugno, N.M., Front. Mater. 2, 00051 (2015).Google Scholar
Pugno, N.M., Ruoff, R.S., Philos. Mag. 84, 2829 (2004).Google Scholar
Yang, S.W., Budarapu, P.R., Mahapatra, D.R., Bordas, S.P.A., Zi, G., Rabczuk, T., Comput. Mater. Sci. 96, 382 (2015).Google Scholar
Barbieri, E., Meo, M., Compos. Sci. Technol. 69, 2169 (2009).Google Scholar
Zhang, L.T., Liu, W.K., Li, S.F., Qian, D., Hao, S., “Survey of Multi-scale Meshfree Particle Methods,” in Meshfree Methods for Partial Differential Equations, Griebel, M., Schweitzer, M.A., Eds. (Springer Berlin Heidelberg, Berlin, 2003).Google Scholar
Song, J.H., Wang, H.W., Belytschko, T., Comput. Mech. 42, 239 (2008).Google Scholar
Silling, S.A., J. Mech. Phys. Solids 48, 175 (2000).Google Scholar
Sen, D., Buehler, M.J., Sci Rep. 1, 35 (2011).Google Scholar
Zhang, Z.Q., Zhang, Y.W., Gao, H.J., Proc. R. Soc. Lond. B 278, 519 (2011).Google Scholar
Lin, S.C., Ryu, S., Tokareva, O., Gronau, G., Jacobsen, M.M., Huang, W.W., Rizzo, D.J., Li, D., Staii, C., Pugno, N.M., Wong, J.Y., Kaplan, D.L., Buehler, M.J., Nat. Commun. 6, 6892 (2015).Google Scholar
Panzavolta, S., Bracci, B., Gualandi, C., Focarete, M.L., Treossi, E., Kouroupis-Agalou, K., Rubini, K., Bosia, F., Brely, L., Pugno, N.M., Palermo, V., Bigi, A., Carbon 78, 566 (2014).Google Scholar
Dimas, L.S., Bratzel, G.H., Eylon, I., Buehler, M.J., Adv. Funct. Mater. 23, 4629 (2013).Google Scholar
Balazs, A.C., Mater. Today 10, 18 (2007).Google Scholar
Bosia, F., Abdalrahman, T., Pugno, N.M., Langmuir 30, 1123 (2014).Google Scholar
Bosia, F., Merlino, M., Pugno, N.M., J. Mater. Res. 30, 2 (2015).CrossRefGoogle Scholar
Lee, J.-H., Loya, P.E., Lou, J., Thomas, E.L., Science 346, 1092 (2014).Google Scholar
Yoon, K., Ostadhossein, A., van Duin, A.C.T., Carbon 99, 58 (2016).Google Scholar
Patek, S.N., Caldwell, R.L., J. Exp. Biol. 208, 3655 (2005).Google Scholar
Kundanati, L., Gundiah, N., J. Exp. Biol. 217, 1946 (2014).Google Scholar
Yang, W., Chen, I.H., Gludovatz, B., Zimmermann, E.A., Ritchie, R.O., Meyers, M.A., Adv. Mater. 25, 31 (2013).Google Scholar
Yao, H.M., Dao, M., Imholt, T., Huang, J.M., Wheeler, K., Bonilla, A., Suresh, S., Ortiz, C., Proc. Natl. Acad. Sci. U.S.A. 107, 987 (2010).CrossRefGoogle Scholar
Ritchie, R.O., Nat. Mater. 13, 435 (2014).Google Scholar
Lin, E., Li, Y., Ortiz, C., Boyce, M.C., J. Mech. Phys. Solids 73, 166 (2014).Google Scholar
Signetti, S., Pugno, N.M., J. Eur. Ceram. Soc. 34, 2823 (2014).Google Scholar
Baum, M.J., Kovalev, A.E., Michels, J., Gorb, S.N., Tribol. Lett. 54, 139 (2014).Google Scholar
Arndt, E.M., Moore, W., Lee, W.-K., Ortiz, C., Science 348, 563 (2015).Google Scholar
Wriggers, P., Computational Contact Mechanics, 2nd ed. (Springer-Verlag Berlin Heidelberg, New York, 2006).Google Scholar
Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y., Comput. Methods Appl. Mech. Eng. 194, 4135 (2005).Google Scholar
Varenberg, M., Pugno, N.M., Gorb, S.N., Soft Matter 6, 3269 (2010).Google Scholar
Kamperman, M., Kroner, E., del Campo, A., McMeeking, R.M., Arzt, E., Adv. Eng. Mater. 12, 335 (2010).CrossRefGoogle Scholar
Peisker, H., Michels, J., Gorb, S.N., Nat. Commun. 4, 1661 (2013).Google Scholar
Sahni, V., Harris, J., Blackledge, T.A., Dhinojwala, A., Nat. Commun. 3, 1106 (2012).CrossRefGoogle Scholar
Pugno, N.M., Int. J. Fract. 171, 185 (2011).Google Scholar
Bosia, F., Colella, S., Mattoli, V., Mazzolai, B., Pugno, N.M., RSC Adv. 4, 25447 (2014).Google Scholar
Brely, L., Bosia, F., Pugno, N.M., Interface Focus 5, 20140051 (2015).Google Scholar
Sauer, R.A., Holl, M., Comput. Methods Biomech. Biomed. Eng. 16, 577 (2013).Google Scholar
Carbone, G., Pierro, E., Gorb, S.N., Soft Matter 7, 5545 (2011).Google Scholar
Theckes, B., Langre, E.D., Boutillon, X., Bioinspir. Biomim. 6, 046010 (2011).Google Scholar
Xu, Y.L., Tian, X.G., Chen, C.Q., Physica B 407, 1995 (2012).Google Scholar
Lim, Q.J., Wang, P., Koh, S.J.A., Khoo, E.H., Bertoldi, K., Appl. Phys. Lett. 107, 221911 (2015).Google Scholar
Mousanezhad, D., Babaee, S., Ebrahimi, H., Ghosh, R., Hamouda, A.S., Bertoldi, K., Vaziri, A., Sci. Rep. 5, 18306 (2015).Google Scholar
Miniaci, M., Krushynska, A., Bosia, F., Pugno, N.M., submitted to J. Mech. Phys. Solids (forthcoming).Google Scholar
Mousanezhad, D., Babaee, S., Ghosh, R., Mahdi, E., Bertoldi, K., Vaziri, A., Phys. Rev. B Condens. Matter 92, 104304 (2015).Google Scholar
Lepore, E., Bonaccorso, F., Bruna, M., Bosia, F., Taioli, S., Garberoglio, G., Ferrari, A.C., Pugno, N.M., Condens. Matter Mater. Sci. (2015), available at http://arxiv.org/abs/1504.06751.Google Scholar
Buehler, M., Ackbarow, T., Mater. Today 10, 46 (2007).CrossRefGoogle Scholar