Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T21:47:14.376Z Has data issue: false hasContentIssue false

Compound Semiconductors for Low-Power p-Channel Field-Effect Transistors

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Research in n-channel field-effect transistors based upon III–V compound semiconductors has been very productive over the last 30 years, with successful applications in a variety of high-speed analog circuits. For digital applications, complementary circuits are desirable to minimize static power consumption. Hence, p-channel transistors are also needed. Unfortunately, hole mobilities are generally much lower than electron mobilities for III–V compounds. This article reviews the recent work to enhance hole mobilities in antimonide-based quantum wells. Epitaxial heterostructures have been grown with the channel material in 1–2% compressive strain. The strain modifies the valence band structure, resulting in hole mobilities as high as 1500 cm2/Vs. The next steps toward an ultra-low-power complementary metal oxide semiconductor technology will include development of a compatible insulator technology and integration of n- and p-channel transistors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Nguyen, L.D., Larson, L.E., Mishra, U.K., Proc. IEEE 80, 494 (1992).CrossRefGoogle Scholar
2Bennett, B.R., Magno, R., Boos, J.B., Kruppa, W., Ancona, M.G., Solid State Electron. 49, 1875 (2005).CrossRefGoogle Scholar
3Stormer, H.L., Baldwin, K., Gossard, A.C., Wiegmann, W., Appl. Phys. Lett. 44, 1062 (1984).CrossRefGoogle Scholar
4Tiwari, S., Wang, W.I., IEEE Electron Device Lett. 5, 333 (1984).CrossRefGoogle Scholar
5Park, H., Mandeville, P., Saito, R., Tasker, P.J., Schaff, W.J., Eastman, L.F., Proceedings: IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits 101 (1989).Google Scholar
6Ruden, P.P., Shur, M., Arch, D.K., Daniels, R.R., Grider, D.E., Nohava, T.E., IEEE Trans. Electron Devices 36, 2371 (1989).CrossRefGoogle Scholar
7Hara, N., Suehiro, H., Shima, M., Kuroda, S., IEEE Electron Device Lett. 18, 63 (1997).CrossRefGoogle Scholar
8Tsai, J.H., Zhu, K.P., Chu, Y.C., Chiu, S.Y., Electron. Lett. 39, 1611 (2003).CrossRefGoogle Scholar
9Chan, Y.J., Pavlidis, D., IEEE Trans. Electron Devices 39, 466 (1992).CrossRefGoogle Scholar
10Kusters, A.M., Kohl, A., Sommer, V., Muller, R., Heime, K., IEEE Trans. Electron Devices 40, 2164 (1993).CrossRefGoogle Scholar
11Drummond, T.J., Zipperian, T.E., Fritz, I.J., Schirber, J.E., Plut, T.A., Appl. Phys. Lett. 49, 461 (1986).CrossRefGoogle Scholar
12Hsu, R.T., Hsu, W.C., Wang, J.S., Kao, M.J., Wu, Y.H., Su, J.S., Jpn. J. Appl. Phys. 35, 2085 (1996).CrossRefGoogle Scholar
13Kim, H.J., Kim, D.M., Woo, D.H., Kim, S.I., Kim, S.H., Lee, J.I., Kang, K.N., Cho, K., Appl. Phys. Lett. 72, 584 (1998).CrossRefGoogle Scholar
14Luo, L.F., Longenbach, K.F., Wang, W.I., Electron. Lett. 27, 472 (1991).CrossRefGoogle Scholar
15Yoh, K., Taniguchi, H., Kiyomi, K., Inoue, M., Jpn. J. Appl. Phys. Part 1 30, 3833 (1991).CrossRefGoogle Scholar
16Bennett, B.R., Ancona, M.G., Boos, J.B., Canedy, C.B., Khan, S.A., J. Cryst. Growth 311, 47 (2008).CrossRefGoogle Scholar
17Bennett, B.R., Ancona, M.G., Brad Boos, J., Shanabrook, B.V., Appl. Phys. Lett. 91, 042104 (2007).CrossRefGoogle Scholar
18Boos, J.B., Bennett, B.R., Papanicolaou, N.A., Ancona, M.G., Champlain, J.G., Bass, R., Shanabrook, B.V., Electron. Lett. 43, 834 (2007).CrossRefGoogle Scholar
19Radosavljevic, M., Ashley, T., Andreev, A., Coomber, S.D., Dewey, G., Emeny, M.T., Fearn, M., Hayes, D.G., Hilton, K.P., Hudait, M.K., Jefferies, R., Martin, T., Pillarisetty, R., Rachmady, W., Rakshit, T., Smith, S.J., Uren, M.J., Wallis, D.J., Wilding, P.J., Chau, Robert, IEDM Technical Digest, 727 (2008).Google Scholar
20Birner, S., Zibold, T., Andlauer, T., Kubis, T., Sabathil, M., Trellakis, A., Vogl, P., IEEE Trans. Electron Devices 54, 2137 (2007).CrossRefGoogle Scholar
21Takagi, S., Tezuka, T., Irisawa, T., Nakaharai, S., Numata, T., Usuda, K., Sugiyama, N., Shichijo, M., Nakane, R., Sugahara, S., Solid State Electron. 51, 526 (2007).CrossRefGoogle Scholar
22Boos, J.B., Bennett, B.R., Papanicolaou, N.A., Ancona, M.G., Champlain, J.G., Park, D., Kruppa, W., Weaver, B.D., Bass, R., Shanabrook, B.V., paper presented at the “Device Research ConferenceUniversity Park, PA, 23 June 2009.Google Scholar
23Klem, J.F., Lott, J.A., Schirber, J.E., Kurtz, S.R., Lin, S.Y., J. Electron. Mater. 22, 315 (1993).CrossRefGoogle Scholar
24Boos, J.B., Bennett, B.R., Papanicolaou, N.A., Ancona, M.G., Champlain, J.G., Chou, Y.C., Lange, M.D., Yang, J.M., Bass, R., Park, D., Shanabrook, B.V., IEICE Trans. Electron. E91c, 1050 (2008).CrossRefGoogle Scholar
25Kruppa, W., Boos, J.B., Bennett, B.R., Papanicolaou, N.A., Electron. Lett. 44, 1155 (2008).CrossRefGoogle Scholar
26Edirisooriya, M., Mishima, T.D., Gaspe, C.K., Bottoms, K., Hauenstein, R.J., Santos, M.B., J. Cryst. Growth 311, 1972 (2009).CrossRefGoogle Scholar
27Santos, M.B., private communication (September, 2008).Google Scholar
28Lee, M.L., Fitzgerald, E.A., Bulsara, M.T., Currie, M.T., Lochtefeld, A., J. Appl. Phys. 97, 011101 (2005).CrossRefGoogle Scholar
29Chau, R., Datta, S., Doczy, M., Doyle, B., Jin, J., Kavalieros, J., Majumdar, A., Metz, M., Radosavljevic, M., IEEE Trans. Nanotechnol. 4, 153 (2005).CrossRefGoogle Scholar
30Delhaye, G., Desplanque, L., Wallart, X., J. Appl. Phys. 104, 066105 (2008).CrossRefGoogle Scholar
31Kim, D.H., del Alamo, J.A., IEEE Trans. Electron Devices 55, 2546 (2008).Google Scholar
32Kim, D.H., del Alamo, J.A., Lee, J.H., Seo, K.S., IEEE Trans. Electron Devices 54, 2606 (2007).CrossRefGoogle Scholar
33Tsai, J.H., Weng, T.Y., Li, C.M., Semicond. Sci. Technol. 23, 075018 (2008).CrossRefGoogle Scholar
34Kim, D.H., del Alamo, J.A., IEDM Technical Digest, 719 (2008).Google Scholar