Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T15:11:35.828Z Has data issue: false hasContentIssue false

Colloidal Glasses

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

This article reviews recent advances in understanding amorphous glassy states in dense colloidal suspensions with or without short-range interparticle attractions. Experiments, theory, and simulation show that two kinds of glassy states are possible, dominated respectively by repulsion and attraction. Under suitable conditions, a small change in the interparticle potential can lead to a transition between these two kinds of colloidal glasses that entails sharp changes in material properties such as the shear modulus. This may provide novel routes for fine-tuning the properties of industrial pastes and slurries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bengtzelius, U., Götze, W., and Sjölander, A., J. Phys. C 17 (1984) p. 5915.CrossRefGoogle Scholar
2. Pusey, P.N. and Megen, W. van, Nature 320 (1986) p. 340.Google Scholar
3. Pusey, P.N. and Megen, W. van, Phys. Rev. Lett. 59 (1987) p. 2083.CrossRefGoogle Scholar
4. The MCT literature is mostly very mathematical. For a less extensively mathematical review, see Götze, W. and , Sjölander, Rep. Prog. Phys. 55 (1992) p. 241. For brief critical introductions, see K. Kawasaki and B. Kim, J. Phys.: Condens. Matter 14 (2002) p. 2265; and M.E. Cates, “Arrest and Flow of Colloidal Glasses,” arXiv.org e-print archive, http://arxiv.org/abs/cond-mat/0211066 (accessed December 2003).CrossRefGoogle Scholar
5. Megen, W. van and Underwood, S.M., Phys. Rev. E 49 (1994) p. 4206.CrossRefGoogle Scholar
6. Weeks, E.R., Crocker, J.C., Levitt, A.C., Schofield, A., and Weitz, D.A., Science 287 (2000) p. 627.Google Scholar
7. Poon, W.C.K., Selfe, J.S., Robertson, M.B., Ilett, S.M., Pirie, A.D., and Pusey, P.N., J. Phys. II 3 (1993) p. 1075.Google Scholar
8. For a review of this model system, see Poon, W.C.K., J. Phys.: Condens. Matter 14 (2002) p. R859.Google Scholar
9. Bergenholtz, J. and Fuchs, M., Phys. Rev. E 59 (1999) p. 5706.CrossRefGoogle Scholar
10. Fabbian, L., Götze, W., Sciortino, F., Tartaglia, P., and Thiery, F., Phys. Rev. E 59 (1999) p. R1347; L. Fabbian, W. Götze, F. Sciortino, P. Tartaglia, and F. Thiery, Phys. Rev. E 60 (1999) p. 2430.Google Scholar
11. Pham, K.N., Puertas, A.M., Bergenholtz, J., Egelhaaf, S.U., Moussaïd, A., Pusey, P.N., Schofield, A.B., Cates, M.E., Fuchs, M., and Poon, W.C.K., Science 296 (2002) p. 104.CrossRefGoogle Scholar
12. Puertas, A.M., Fuchs, M., and Cates, M.E., Phys. Rev. Lett. 88 098301 (2002).CrossRefGoogle Scholar
13. Pham, K.N., Egelhaaf, S.U., Pusey, P.N., and Poon, W.C.K., “Glasses in Hard Spheres with Short-Range Attraction,” arXiv.org e-print archive, http://arxiv.org/abs/cond-mat/0308250 (accessed December 2003).CrossRefGoogle Scholar
14. Eckert, T. and Bartsch, E., Phys. Rev. Lett. 89 125701 (2002).CrossRefGoogle Scholar
15. Chen, S.H., Chen, W.R., and Mallamace, F., Science 300 (2003) p. 619.CrossRefGoogle Scholar
16. Grandjean, J. and Mourchid, A., in Self-Assembled Nanostructured Materials, edited by Lu, Y., Brinker, C.J., Antonietti, M., and Bai, C. (Mater. Res. Soc. Symp. Proc. 775, Warrendale, PA, 2003) p. 231.Google Scholar
17. Dawson, K., Foffi, G., Fuchs, M., Gotze, W., Sciortino, F., Sperl, M., Tartaglia, P., Th. Voigtmann, and Zaccarelli, E., Phys. Rev. E 63 011401 (2001).Google Scholar
18. Sciortino, F., Nat. Mater. 1 (2002) p. 145.Google Scholar
19. Sperl, M. and Gotze, W., Phys. Rev. E 66 011405 (2002).Google Scholar
20. Sciortino, F., Tartaglia, P., and Zaccarelli, E., “Logarithmic Relaxation in Dense Short-Ranged Attractive Colloids,” arXiv.org e-print archive, http://arxiv.org/abs/cond-mat/ 0304192 (accessed December 2003).Google Scholar
21. Zaccarelli, E., Foffi, G., Sciortino, F., and Tartaglia, P., Phys. Rev. Lett. 91 1083101 (2003).Google Scholar
22. Schweizer, K.S. and Saltzman, E.J., J. Chem. Phys. 119 (2003) p. 1181.CrossRefGoogle Scholar
23. Szamel, G., Phys. Rev. Lett. 90 228301 (2003). However, using simulated (rather than analytic) structure factors in standard mode coupling theory gives φg = 0.546; G. Foffi, W. Gotze, F. Sciortino, P. Tartaglia, and Th. Voigtmann, “Alpha-Relaxation Processes in Binary Hard-Sphere Mixtures,” arXiv.org e-print archive, http://arxiv.org/abs/cond-mat/ 0309007 (accessed December 2003).CrossRefGoogle Scholar
24. Donth, E., J. Phys. 16 (1996) p. 1189; D. Long and F. Lequeux, Eur. Phys. J. E 4 (2001) p. 371; S. Merabia and D. Long, Eur. Phys. J. E 9 (2002) p. 195; J.P. Garrahan and D. Chandler, Phys. Rev. Lett. 89 035704 (2002).Google Scholar
25. Cipelletti, L., Bissig, H., Trappe, V., Ballesta, P., and Mazoyer, S., J. Phys.: Condens. Matter 15 (2003) p. S257.Google Scholar
26. Fuchs, M. and Cates, M.E., Faraday Discuss. 123 (2003) p. 267; M. Fuchs and M.E. Cates, Phys. Rev. Lett. 89 248304 (2002).CrossRefGoogle Scholar
27. Fielding, S.M., Sollich, P., and Cates, M.E., J. Rheol. 44 (2000) p. 323.Google Scholar
28. Segre, P.N., Prasad, V., Schofield, A.B., and Weitz, D.A., Phys. Rev. Lett. 86 (2001) p. 6042.CrossRefGoogle Scholar
29. Poon, W.C.K., Faraday Discuss. 123 (2003) p. 95; K. Kroy, M.E. Cates, and W.C.K. Poon, “A cluster mode-coupling to weak gelation in attractive colloids,” arXiv.org e-print archive, http://arxiv.org/abs/cond-mat/0310566 (accessed January 2004).CrossRefGoogle Scholar
30. Stiakakis, E., Vlassopoulos, D., Loppinet, B., Roovers, J., and Meier, G., Phys. Rev. E 66 051804 (2002).Google Scholar
31. Beck, C., Hartl, W., and Hempelmann, R., J. Chem. Phys. 111 (1999) p. 8209.Google Scholar