Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T20:36:45.977Z Has data issue: false hasContentIssue false

Chemical-Vapor-Deposited Tungsten for Vertical Wiring

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

As the feature size of ULSI (ultralarge-scale integration) circuit devices shrinks, interconnects need to be scaled to maximize the wiring density and wire ability. This increased density leads to smaller contacts or via holes connecting the wires. The reduction in size increases the aspect ratio of these features for the same dielectric thickness. Conventional physical vapor deposition (PVD) techniques such as sputtering are unable to fill high aspect-ratio contacts/vias with aluminum conformally, as shown in Figure 1. This poor conformity is attributed to the shadowing effect by already-deposited nondirectional sputtering atoms and leads to void formation and open failures. Chemical vapor deposition (CVD) is a solution for achieving conformal filling.

This is a prime reason why CVD has been investigated since the 1980s and why a large number of metals have been proposed. Above all, because tungsten as a refractory metal has high resistance to electromigration (EM) failures and tungsten hexafluoride (WF6) as a source gas has some advantages in manufacturing, for example, high vapor pressure (boiling point = 17.4°C) and purity, W-CVD with WF6 based on H2 or SiH4 reduction has been widely studied. Blanket W-CVD has been used for actual via-hole filling for 0.5-μm devices. Figure 2 shows a cross-sectional view of five-level interconnects using W plugs in 0.35-μm devices. Another advantage of W-CVD is that W deposits selectively into via holes if a low flow-rate ratio of reductants to WF6 is used.

Type
Metallization for Integrated Circuit Manufacturing
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See, for example, the following proceeding and its annual workshops since 1985: Tungsten and Other Refractory Metals for VLSI Applications (Materials Research Society, Pittsburgh, 1990).Google Scholar
2.Ichikawa, M., Inoue, K., Izumi, K., Sato, S., Mitarai, S., Kai, M., and Watanabe, K., in 12th Int. VLSI Multilevel Interconnects Conf. (1995) p. 254.Google Scholar
3.Broadbent, E.K. and Ramiller, C.L., J. Electrochem. Soc. 131 (1984) p. 1427.CrossRefGoogle Scholar
4.McConica, C.M. and Krishnamani, K., J. Electrochem. Soc. 133 (1986) p. 2542.CrossRefGoogle Scholar
5.Bonfield, T. and Blumenthal, R., Proc. Tungsten and Other Advanced Metals for VLSI/ULSI Applications V, edited by Wong, S.S. and Furukawa, S. (Materials Research Society, Pittsburgh, 1990) p. 145.Google Scholar
6.Joshi, R.V., Mehter, E., Chow, M., and Ishaq, M., Proc. Tungsten and Other Advanced Metals for VLSI/ULSI Applications V, edited by Wong, S.S. and Furukawa, S. (Materials Research Society, Pittsburgh, 1990) p. 157.Google Scholar
7.Clark, T.E., Constant, A.P., Chang, M., and Leung, C., Proc. Tungsten and Other Advanced Metals for VLSI/ULSI Applications V, edited by Wong, S.S. and Furukawa, S. (Materials Research Society, Pittsburgh, 1990) p. 167.Google Scholar
8.Iwasaki, M., Itoh, H., Katayama, T., Tsukamoto, K., and Akasaka, Y., Proc. Tungsten and Other Advanced Metals for VLSI/ULSI Applications V, edited by Wong, S.S. and Furukawa, S. (Materials Research Society, Pittsburgh, 1990) p. 187.Google Scholar
9.Ohba, T., Iio, H., Higashimoto, M., Hara, T., Watanabe, K., Yagi, H., and Furumura, Y., Extended Abstracts (The 42th Spring Meeting, The Japan Society of Applied Physics and Related Societies, 1995) p. 730.Google Scholar
10.Woodruff, D.W., Wilson, R.H., and Sanchez-Martunez, R.A., Proc. Tungsten and Other Refractory Met. for VLSI Applications, edited by Blewer, R.S. (Materials Research Society, Pittsburgh, 1985) p. 173.Google Scholar
11.Ohba, T., Proc. Advanced Metallization for ULSI Applications, edited by Rana, V.V.S., Joshi, R.V., and Ohdomari, I. (Materials Research Society, Pittsburgh, 1992) p. 25.Google Scholar
12.Goto, H., Kobayashi, N., and Hommna, Y., Ext. Abst. Int. Conf. Solid State Devices and Materials 183 (1991).Google Scholar
13.Joshi, R.V. and Brodsky, S., Appl. Phys. Lett. 61 (21) (1992) p. 2613.CrossRefGoogle Scholar
14.Pintchovski, F., White, T., Travis, E., Tobin, P.J., and Price, J.B., Proc. Tungsten and Other Refractory Metals for VLSI Applications IV, edited by Blewer, R.S. and McConica, M.C. (Materials Research Society, Pittsburgh, 1989) p. 275.Google Scholar
15.Suzuki, T., Ohba, T., Furumura, Y., and Tsuchikawa, H., IEEE IEDM Tech. Dig. (1992) p. 979.Google Scholar
16.Raaijmakers, I.J., Vrtis, R.N., Sandhu, G.S., Yang, J., Broadbent, E.K., Roberts, D.A., and Lagendijk, A., Proc. IEEE VLSI Multilevel Interconnection Conf. 260 (1992).Google Scholar
17.Ohba, T., Appl. Surface Sci., in press.Google Scholar
18.Joshi, R.V., Basavaiah, S., Hsu, L., and Jaso, M., Proc. Advanced Metallization for ULSI Applications, edited by Rana, V.V.S., Joshi, R.V., and Ohdomari, I. (Materials Research Society, Pittsburgh, 1992) p. 35.Google Scholar
19.Blewer, R.S. and Wells, V.A., IEEE IEDM Tech. Dig. (1984) p. 852.Google Scholar
20.Stacy, W.T., Broadbent, E.K., and Norcott, M.H., J. Electrochem. Soc. 132 (1985) p. 444.CrossRefGoogle Scholar
21.Green, M.L. and Levy, R.A., Electrochem. Soc. 132 (1985) p. 1243.CrossRefGoogle Scholar
22.Busta, H.H. and Tang, C.H., J. Electrochem. Soc. 131 (1986) p. 1195.CrossRefGoogle Scholar
23.Ohba, T., Furumura, Y., and Tsuchikawa, H., Proc. Advanced Metallization for ULSI Applications 1992, edited by Cale, T.S. and Pintchovski, F.S. (Materials Research Society, Pittsburgh, 1993) p. 177.Google Scholar
24.Lifshitz, N., Appl. Phys. Lett. 51 (1987) p. 967.CrossRefGoogle Scholar
25.Yarmoff, J.A. and McFeely, F.R., J. Appl. Phys. 63 (1988) p. 5213.CrossRefGoogle Scholar
26.Yu, M.L. and Eldridge, B.N., J. Vac. Sci. Technol. A7 (1989) p. 625.CrossRefGoogle Scholar
27.Joshi, R.V., Prasad, V., Yu, M.L., and Scilla, G., J. Appl. Phys. 171 (1992) p. 1428.CrossRefGoogle Scholar
28.Leusink, G.J., Kleijn, C.R., Oosterlaken, T.G.M., Janssen, G.C.A.M., and Radelaar, S., J. Appl. Phys. 72 (1992) p. 490.CrossRefGoogle Scholar
29.Ohba, T., Inoue, S., and Maeda, M., IEEE IEDM Tech. Dig. 213 (1987).Google Scholar
30.Kotani, H., Tsutsumi, T., Komori, J., and Nagao, S., IEEE IEDM Tech. Dig. 217 (1987).Google Scholar
31.Kusumoto, Y., Takakuwa, K., Hashinokuchi, H., Ikuta, T., and Nakayama, I., Proc. Tungsten and Other Refractory Met. for VLSI Applications III, edited by Wells, V.A. (Materials Research Society, Pittsburgh, 1988) p. 103.Google Scholar
32.Kobayashi, N., Goto, H., and Suzuki, M., J. Appl. Phys. 69 (1991) p. 1013.CrossRefGoogle Scholar
33.Ohba, T. and Furumura, Y., J. of the Institution of Electron, and Telecommunication Eng. 37 (1991) p. 212.Google Scholar
34.Ohba, T., Furumura, Y., and Tsuchikawa, H., Proc. Advanced Metallization for ULSI Applications, edited by Rana, V.V.S., Joshi, R.V., and Ohdomari, I. (Materials Research Society, Pittsburgh, 1992) p. 211.Google Scholar
35.Hara, T., Suzuki, T., Misawa, N., Ohba, T., and Furumura, Y., Proc. 11th Int. Conf. Chem. Vapor Deposition, edited by Spear, K.E. and Cullen, G.W. (Electrochemical Society, Pennington, NJ, 1990) p. 441.Google Scholar
36.Tamaru, T., Kobayashi, N., and Tokunaga, T., Proc. Dry Process Symp. 51 (1990).Google Scholar
37.Izumi, A., Touei, K., Yamano, A., Chong, Y., and Watanabe, N., Proc. 11th Int. Conf. Chem. Vapor Deposition, edited by Spear, K.E. and Cullen, G.W. (Electrochemical Society, Pennington, NJ, 1990) p. 425.Google Scholar
38.Cheek, R.W., Prasad, J., Kelber, J.A., Blewer, R.S., Fleming, J., and Lujan, R.D., Proc. Advanced Metallization for ULSI Applications, edited by Rana, V.V.S., Joshi, R.V., and Ohdomari, I. (Materials Research Society, Pittsburgh, 1992) p. 227.Google Scholar