Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-03T20:20:55.148Z Has data issue: false hasContentIssue false

Chemical and Biological Protection and Detection in Fabrics for Protective Clothing

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Military, firefighter, law enforcement, and medical personnel require high-level protection when dealing with chemical and biological threats in many environments ranging from combat to urban, agricultural, and industrial. Current protective clothing is based on full barrier protection, such as hazardous materials (HAZMAT) suits, or permeable adsorptive protective overgarments, such as those used by the U.S. military. New protective garment systems are envisioned that contain novel features, such as the capability to selectively block toxic chemicals, to chemically destroy toxic materials that contact the fabric, and to detect hazardous agents on the surface of the fabric. New technologies being built into advanced fabrics for enhanced chemical and biological protection include selectively permeable membranes, reactive nanoparticles, reactive nanofibers, biocidal fabric treatments, and conductive-polymer indicators on optical fibers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Truong, Q. and Rivin, D., “Evaluation of CHEMPAK Light™ Membrane for Chemical/Biological Protective Clothing,” NATICK/TR-96/023L (U.S. Army Natick Research, Development, and Engineering Center, Natick, MA, 1996).Google Scholar
2.Koros, W. and Fleming, G., J. Membr. Sci. 83 (1) (1993) p. 1.Google Scholar
3.Ho, W. and Sircar, K., eds., Membrane Handbook, Chapter 1 (Van Nostrand Reinhold, New York, 1992).CrossRefGoogle Scholar
4.Yang, Y., Corcoran, L., Vorlicek, K., and Li, S., Textile Chemist and Colorist & American Dyestuff Reporter 23 (4) (2000) p. 44.Google Scholar
5.Heath, R.J., Rubin, R., Holland, D.R., Zhang, E., Snow, M.E., and Rock, C.O., J. Biol. Chem. 274 (16) (1999) p. 11110.Google Scholar
6.Sun, G. and Xu, X., Textile Chemist and Colorist 30 (6) (1998) p. 26.Google Scholar
7.Sun, G. and Xu, X., Textile Chemist and Colorist 31 (5) (1999) p. 31.Google Scholar
8.Lin, J., Winkelmann, C., Worley, S.D., Kim, J., Wei, C.-I., Cho, U., Broughton, R.M., Santiago, J.I., and Williams, J.F., J. Appl. Polym. Sci. 85 (2002) p. 177.Google Scholar
9.Lin, J., Winkelmann, C., Worley, S.D., Broughton, R.M., and Williams, J.F., J. Appl. Polym. Sci. 81 (2001) p. 943.Google Scholar
10.Worley, S.D., Li, F., Wu, R., Kim, J., Wei, C.K., Williams, J.F., Owens, J.R., Wander, J., Bargmeyer, A.M., and Shirtliff, M.E., Surf. Coat. Int., Part B, Coat. Trans. (2003) in press.Google Scholar
11.Kuhm, J.O., Laboratory Studies No. 5649–00, 5650–00, 5651–00, 5652–00, 5655–00, Oppts. No. 870.2500 (Stillmeadow Inc., Sugarland, TX, 2000).Google Scholar
12.Schreuder, H.L., Gibson, P., Senecal, K., Sennett, M., Walker, J., Yeomans, W., Ziegler, D., and Tsai, P.T., J. Adv. Mater. 34 (3) (2002) p. 44.Google Scholar
13.Moss, R.A., Alwis, K.W., and Bizzigotti, G.O., J. Am. Chem. Soc. 105 (1983) p. 681.CrossRefGoogle Scholar
14.Hammond, P.S., Forester, J.S., Lieske, C.N., and Durst, H.D., J. Am. Chem. Soc. 111 (1989) p. 7860.CrossRefGoogle Scholar
15.Seltzman, H.H. and Szulc, Z.M., Med. Defense Biosci. Rev. 1 (1996) p. 339.Google Scholar
16.Hoskin, F.C.G., Steeves, D.M., and Walker, J.E., Biol. Bull. 197 (1999) p. 284.Google Scholar
17.Gall, R.D., Hill, C.L., and Walker, J.E., J. Catal. 159 (1996) p. 473.CrossRefGoogle Scholar
18.Wagner, G.W., Bartrum, P.W., Koper, O., and Klabunde, K.J., J. Phys. Chem. B 103 (1999) p. 325.Google Scholar
19.Koper, O., Klabunde, K.J., Marchin, G., Stormenov, P., and Bohra, L., Curr. Microbiol. 44 (2002) p. 49.Google Scholar
20.Feng, J. and MacDiarmid, A.G., Synth. Met. 102 (1999) p. 1304.Google Scholar
21.Josowicz, M. and Janata, J., Anal. Chem. 58 (1986) p. 514.Google Scholar
22.Kanatzidis, M.G., Chem. & Eng. News (December 3, 1990) p. 36.CrossRefGoogle Scholar
23.Schmeiber, D., Appel, G., Böhme, O., Heller, T., Mikalo, R.P., Hoffmann, P., and Batchelor, D., Sens. Actuators, B 70 (1–3) (2000) p. 131.CrossRefGoogle Scholar
24.Jin, Z., Su, Y., and Duan, Y., Sens. Actuators, B 72 (1) (2001) p. 75.CrossRefGoogle Scholar
25.Malinauskas, A., Polymer 42 (2001) p. 3957.Google Scholar
26.Hohnholz, D., MacDiarmid, A.G., Sarno, D.M., and Jones, W.E., J. Chem. Soc., Chem. Comm. (2001) p. 2444.Google Scholar
27.Janata, J. and Jasowicz, M., Acc. Chem. Res. 31 (5) (1998) p. 241.CrossRefGoogle Scholar
28.Sadik, O., Electroanalysis 11 (12) (1999) p. 839.3.0.CO;2-1>CrossRefGoogle Scholar
29.Barisci, J.N., Wallace, G.G., Andrews, M.K., Partridge, A.C., and Harris, P.D., Sens. Actuators, B 84 (2) (2002) p. 252.CrossRefGoogle Scholar
30.Pavlou, A., Turner, A.P., and Magan, N., Lett. Appl. Microbiol. 35 (5) (2002) p. 366.CrossRefGoogle Scholar
31.Guadarrama, A., Fernández, J.A., fñiguez, M., Souto, J., and de Saja, J.A., Sens. Actuators, B 77 (1–2) (2001) p. 401.Google Scholar
32.Reneker, D.H. and Chun, I., Nanotechnology 7 (1996) p. 216.CrossRefGoogle Scholar
33.Reneker, D.H., Yarin, A.L., Fong, H., and Koombhongse, S., J. Appl. Phys. 87 (2000) p. 4531.CrossRefGoogle Scholar
34.Norris, I.D., Shakar, M.M., Ko, F.K., and Mac, A.G.Diarmid, Synth. Met. 114 (2) (2000) p. 109.Google Scholar
35.MacDiarmid, A.G., Jones, W.E. Jr, Norris, I.D., Gao, J., Johnson, A.T. Jr, Pinto, N.J., Hone, J., Han, B., Ko, F.K., Okuzaki, H., and Llaguno, M., Synth. Met. 119 (2001) p. 27.CrossRefGoogle Scholar
36.Yuan, J., El-Sherif, M.A., MacDiarmid, A.G., and Jones, W.E. Jr, in Proc. SPIE Advanced Environmental and Chemical Sensing Technologies, Vol. 4205 (SPIE—The International Society for Optical Engineering, Bellingham, WA, 2000) p. 170.CrossRefGoogle Scholar
37.MacDiarmid, A.G., Norris, I.D., Jones, W.E. Jr, El-Sherif, M.A., Yuan, J., Han, B., and Ko, F.K., Polym. Mater. Sci. Eng. 220 (310) (2000) p. 544.Google Scholar
38.Zavalij, P.Y., Burton, B.L., and Jones, W.E. Jr., Acta Crystallogr., Sect. C C58 (2002) p. 1.Google Scholar
39.Martin, C.R., Science 266 (1994) p. 1961.CrossRefGoogle Scholar
40.Parthasarathy, R.V. and Martin, C.R., Chem. Mater. 6 (1994) p. 1627.Google Scholar
41.Cepark, V.M., Hulteen, J.C., Che, G., Jirage, K.B., Lakshmi, B.B., Fisher, E.R., and Martin, C.R., Chem. Mater. 9 (1997) p. 1065.Google Scholar
42.Qiu, H., Wan, M., Matthews, B., and Dai, L., Macromolecules 34 (2001) p. 675.Google Scholar
43.Liu, J. and Wan, M., J. Mater. Chem. 11 (2001) p. 404.Google Scholar
44.Huang, J. and Wan, M., J. Polym. Sci., Part A: Polym. Chem. 37 (1999) p. 1277.Google Scholar