Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T21:00:30.608Z Has data issue: false hasContentIssue false

Charge Transport through Molecular Junctions

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

In conventional solid-state electronic devices, junctions and interfaces play a significant if not dominant role in controlling charge transport. Although the emerging field of molecular electronics often focuses on the properties of the molecule in the design and understanding of device behavior, the effects of interfaces and junctions are often of comparable importance. This article explores recent work in the study of metal–molecule–metal and semiconductor–molecule–metal junctions. Specific issues include the mixing of discrete molecular levels with the metal continuum, charge transfer between molecules and semiconductors, electron-stimulated desorption, and resonant tunneling. By acknowledging the consequences of junction/interface effects, realistic prospects and limitations can be identified for molecular electronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Heath, J.R. and Ratner, M.A.Phys. Today 56 (2003) p.43.CrossRefGoogle Scholar
2Lang, N.D. and Avouris, P.Nano Lett. 2 (2002) p.1047.CrossRefGoogle Scholar
3Nitzan, A. and Ratner, M.A.Science 300 (2003) p.1384.CrossRefGoogle Scholar
4Piccinin, S.Selloni, A.Scandolo, S.Car, R. and Scoles, G.J. Chem. Phys. 119 (2003) p. 6729.CrossRefGoogle Scholar
5Xue, Y.Datta, S. and Ratner, M.A.J. Chem. Phys. 115 (2001) p.4292.CrossRefGoogle Scholar
6Damle, P.Ghosh, A.W. and Datta, S.Chem. Phys. 281 (2002) p.171.CrossRefGoogle Scholar
7Datta, S.Tian, W.Hong, S.Reifenberger, R.Henderson, J.I. and Kubiak, C.P.Phys. Rev. Lett. 79 (1997) p.2530.CrossRefGoogle Scholar
8Tian, W.Datta, S.Hong, S.Reifenberger, R.Henderson, J. and Kubiak, C.P.J. Chem. Phys. 109 (1998) p.2874.CrossRefGoogle Scholar
9Datta, S.Superlattices Microstruct. 28 (2000) p.253.CrossRefGoogle Scholar
10Palacios, J.J.Louis, E.Perez-Jimenez, A.J., Fabian, E.S. and Verges, J.A.Nanotechnology 13 (2002) p.378.CrossRefGoogle Scholar
11Kergueris, C.Bourgoin, J.P.Palacin, S.Esteve, D.Urbina, C.Magoga, M. and Joachim, C.Phys. Rev. B 59 (1999) p.12505.CrossRefGoogle Scholar
12Ventra, M. Di, Pantelides, S.T. and Lang, N.D.Phys. Rev. Lett. 84 (2000) p.979.CrossRefGoogle Scholar
13Emberly, E.G. and Kirczenow, G.Phys. Rev. B 64 235412 (2001).CrossRefGoogle Scholar
14Lang, N.D. and Avouris, P.Phys. Rev. B 64 125323 (2001).CrossRefGoogle Scholar
15Xue, Y.Datta, S. and Ratner, M.Chem. Phys. 281 (2002) p.151.CrossRefGoogle Scholar
16Adams, D.M.Brus, L.Chidsey, C.E.D.Creager, S.Cruetz, C.Kagan, C.R.Kamat, P.V.Lieberman, M.Lindsay, S.Marcus, R.A.Metzger, R.M.Michel-Beyerle, M.E., Miller, J.R.Newton, M.D.Rolison, D.R.Sankey, O.Schanze, K.S.Yardley, J. and Zhu, X.J. Phys. Chem. B 107 (2003) p.6668.CrossRefGoogle Scholar
17Fenter, P.Schreiber, F.Berman, L.Scoles, G.Eisenberger, P. and Bedzyk, M.J.Surf. Sci. 412/413 (1998) p.213.CrossRefGoogle Scholar
18Noh, J. and Hara, M.Langmuir 18 (2002) p.1953.CrossRefGoogle Scholar
19Kondoh, H.Iwasaki, M.Shimada, T.Ameniya, K.Yokoyama, T.Ohta, T.Shimomura, M. and Kono, S.Phys. Rev. Lett. 90 066102 (2003).CrossRefGoogle Scholar
20Salmeron, M.Neubauer, G.Folch, A.Tomitori, M.Ogletree, D.F. and Sautet, P.Langmuir 9 (1993) p.3600.CrossRefGoogle Scholar
21Wold, D.J. and Frisbie, C.D.J.Am. Chem. Soc. 122 (2000) p.2970.CrossRefGoogle Scholar
22Cui, X.D.Zarate, X. J.Tomfohr, Sankey, O.F.Primak, A.Moore, A.L.Moore, T.A.Gust, D.Harris, G. and Lindsay, S.M.Nanotechnology 13 (2002) p.5.CrossRefGoogle Scholar
23Wang, W.Lee, T. and Reed, M.A.Phys. Rev. B 68 035416 (2003).CrossRefGoogle Scholar
24Xu, B. and Tao, N.J.Science 301 (2003) p.1221.CrossRefGoogle Scholar
25Hong, S.Reifenberger, R.Tian, W.Datta, S.Henderson, J.I. and Kubiak, C.P.Superlattices Microstruct. 28 (2000) p.289.CrossRefGoogle Scholar
26Xue, Y.Datta, S.Hong, S.Reifenberger, R.Henderson, J.I. and Kubiak, C.P.Phys. Rev. B 59 (1999) p.R7852.CrossRefGoogle Scholar
27Chen, J., Reed, M.A.Rawlett, A.M. and Tour, J.M.Science 286 (1999) p.1550.CrossRefGoogle Scholar
28Chen, J.Wang, W.Reed, M.A. and Rawlett, A.M.Appl. Phys. Lett. 77 (2000) p.1224.CrossRefGoogle Scholar
29Service, R.F.Science 302 (2003) p.556.CrossRefGoogle ScholarPubMed
30Zhou, C.Miller, C.J.Deshpande, M.R.Sleight, J.W. and Reed, M.A.Appl. Phys. Lett. 67 (1995) p.1160.CrossRefGoogle Scholar
31Park, H. A.Lim, K.L.Park, J., Alivisatos, A.P. and McEuen, P.L.Appl. Phys. Lett. 75 (1999) p.301.CrossRefGoogle Scholar
32Li, C.Z. and Tao, N.J.Appl. Phys. Lett. 72 (1998) p.894.CrossRefGoogle Scholar
33Reichert, J.Ochs, R.Beckman, D.Weber, H.B.Mayor, M. and Löhneysen, H.v., Phys. Rev. Lett. 88 176804 (2002).CrossRefGoogle Scholar
34Weber, H.B.Reichert, J., Weigand, F.Ochs, R.Beckmann, D.Mayor, M.Ahlrichs, R. and Löhneysen, H.v., Chem. Phys. 281 (2002) p.113.CrossRefGoogle Scholar
35Kubatkin, A.Danilov, A.Hjort, M.Cornil, J., Bredas, J.L.Stuhr-Hansen, A., Hedegard, P. and Bjornholm, T.Nature 425 (2003) p.698.CrossRefGoogle Scholar
36Pasupathy, A.N.Goldsmith, J.I.Chang, C.Yaish, Y.Petta, J.R.Rinkoski, M.Sethna, J.P.Abruna, H.D., McEuen, P.L. and Ralph, D.C.Nature 417 (2002) p.722.Google Scholar
37Liang, W.Shores, M.P.Bockrath, M.Long, J.R. and Park, H.Nature 417 (2002) p.725.CrossRefGoogle Scholar
38Nazin, G.V.Qiu, X.H. and Ho, W.Science 302 (2003) p.77.CrossRefGoogle Scholar
39Buriak, J.M.Chem. Rev. 102 (2002) p. 1271.CrossRefGoogle Scholar
40Patitsas, S.N.Lopinski, G.P.Hul'ko, O., Moffatt, D.J. and Wolkow, R.A.Surf. Sci. Lett. 457 (2000) p.L425.CrossRefGoogle Scholar
41Kruse, P. and Wolkow, R.A.Appl. Phys. Lett. 81 (2002) p.4422.CrossRefGoogle Scholar
42Pitters, J.L.Piva, P.G.Tong, X. and Wolkow, R.A.Nano Lett. 3 (2003) p.1431.CrossRefGoogle Scholar
43Guisinger, N.P.Greene, M.E.Basu, R.Baluch, A.S. and Hersam, M.C.Nano Lett. 4 (2004) p.55.CrossRefGoogle Scholar
44Alavi, S.Rousseau, R.Patitsas, S.N.Lopinski, G.P.Wolkow, R.A. and Seideman, T.Phys. Rev. Lett. 85 (2000) p.5372.CrossRefGoogle Scholar
45Collier, C.P.Mattersteig, G.Wong, E.W.Luo, Y.Beverly, K.Sampaio, J.Raymo, F.M.Stoddart, J.F. and Heath, J.R.Science 289 (2000) p.1172.CrossRefGoogle Scholar
46Liu, Z.Yasseri, A.A.Lindsey, J.S. and Boclan, D.F.Science 302 (2003) p.1543.CrossRefGoogle Scholar
47Kang, J.K. and Musgrave, C.B.J.Chem. Phys. 116 (2002) p.9907.CrossRefGoogle Scholar
48Lopinski, G.P.Wayner, D.D.M. and Wolkow, R.A.Nature 406 (2000) p.48.CrossRefGoogle Scholar
49Kruse, P.Johnson, E.R.DiLabio, G.A. and Wolkow, R.A.Nano Lett. 2 (2002) p.807.CrossRefGoogle Scholar
50Zhao, J. and Uosaki, K.Appl. Phys. Lett. 83 (2003) p.2034.CrossRefGoogle Scholar
51Lenfant, S.Krzeminki, C.Delerue, C.Allan, G. and Vuillaume, D.Nano Lett. 3 (2003) p.741.CrossRefGoogle Scholar
52Loo, Y.L.Lang, D.V.Rogers, J.A. and Hsu, J.W.P.Nano Lett. 3 (2003) p.913.CrossRefGoogle Scholar
53Nicoara, N.Custance, O.Granados, D.Garcia, J.M.Gomez-Rodriguez, J.M., Baro, A.M. and Mendez, J., J.Phys.: Condens. Matter 15 (2003) p.1.Google Scholar
54Rakshit, T.Liang, G.C.Ghosh, A.W. and Datta, S.arXiv.org e-print archive, cond-mat/ 0305695 (accessed March 2004).Google Scholar
55Hersam, M.C.Guisinger, N.P. and Lyding, J.W.Nanotechnology 11 (2000) p.70.CrossRefGoogle Scholar
56Akiyama, R.Matsumoto, T. and Kawai, T.Phys. Rev. B 62 (2000) p.2034.CrossRefGoogle Scholar