Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T02:56:22.907Z Has data issue: false hasContentIssue false

Characterizing Complex Fluids

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Among the experimental techniques used to characterize complex fluids, neutron scattering has played a unique and successful role, primarily for two reasons: (1) neutrons access the proper length and time scales, especially small-angle neutron scattering and reflectometry for structural and kinetic studies and neutron spin echo for dynamic investigations; and (2) for hydrogen-containing substances, the exchange of hydrogen by deuterium facilitates labeling on a molecular scale, an extremely important method for deciphering complex structures in multicomponent materials. In this short review, we give a number of examples for successful neutron studies of dense particle suspensions, including aggregation phenomena, in situ kinetic studies on shape transformations, shear-induced surfactant self-assembly phenomena near surfaces, and dynamics of complex fluids. Finally, we give an outlook on future developments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Evans, D.F. and Wennerström, H., The Colloidal Domain: Where Physics, Chemistry, Biology and Technology Meet (VCH Publishers, New York, 1994).Google Scholar
2.Lindner, P. and Zemb, Th., eds., Neutron, X-Rays and Light Scattering Methods Applied to Soft Condensed Matter (Elsevier Science, New York, 2002).Google Scholar
3.Frenkel, D., Science 296 (2002) p. 65.CrossRefGoogle Scholar
4.Frenkel, D., Physica A 313 (2002) p. 1.CrossRefGoogle Scholar
5.Castellotto, V., Hamley, I.W., and Pedersen, J.S., J. Chem. Phys. 117 (2002) p. 8124.CrossRefGoogle Scholar
6.Suamru, K., Matsuoka, H., Yamaoka, H., and Wignall, G.D., Phys. Rev. E 53 (1996) p. 1744.CrossRefGoogle Scholar
7.Groenewegen, W., Lapp, A., Egelhaaf, S.U., and van der Maarel, J.R.C., Macromolecules 33 (2000) p. 4080.CrossRefGoogle Scholar
8.Muller, F., Fontaine, P., Delsanti, M., Belloni, L., Yang, J., Chen, Y.J., Mays, J.W., Lesieur, P., Tirrell, M., and Guenoun, P., Eur. Phys. J. E 6 (2001) p. 109;CrossRefGoogle Scholar
Roger, M., Guenoun, P., Muller, F., Belloni, L., and Delsanti, M., Eur. Phys. J. E 9 (2002) p. 313.CrossRefGoogle Scholar
9.Rojas-Ochoa, L.F., Romer, S., Scheffold, F., and Schurtenberger, P., Phys. Rev. E 65 051403 (2002).CrossRefGoogle Scholar
10.Likos, C.N., Schmidt, M., Löwen, H., Ballauff, M., Pötschke, D., and Lindner, P., Macromolecules 34 (2001) p. 34.CrossRefGoogle Scholar
11.Stellbrink, J., Allgaier, J., Richter, D., Moussaid, A., Schofield, A.B., Poon, W.C.K., Pusey, P.N., Lindner, P., Dzubiella, J., Likos, C.N., and Löwen, H., Appl. Phys. A Mater. Sci. Proc. 74 (2002) (Suppl. 1) p. S355.CrossRefGoogle Scholar
12.Stellbrink, J., Allgaier, J., and Richter, D., Phys. Rev. E 56 (1997) p. R3772.CrossRefGoogle Scholar
13.Dzubiella, J., Jusufi, A., Likos, C.N., von Ferber, C., Löwen, H., Stellbrink, J., Allgaier, J., Richter, D., Schofield, A.B., Smith, P.A., Poon, W.C.K., and Pusey, P.N., Phys. Rev. E 64 010401 (2001).CrossRefGoogle Scholar
14.Eckert, T. and Bartsch, E., Phys. Rev. Lett. 89 125701 (2002).CrossRefGoogle Scholar
15.Dawson, K., Curr. Opin. Colloid Interface Sci. 7 (2002) p. 218.CrossRefGoogle Scholar
16.Pham, K.N., Puertas, A.M., Bergenholtz, J., Egelhaaf, S.U., Moussaid, A., Pusey, P.N., Schofield, A.B., Cates, M.E., Fuchs, M., and Poon, W.C.K., Science 296 (2002) p. 104.CrossRefGoogle Scholar
17.Chen, W.R., Chen, S.H., and Mallamace, F., Phys. Rev. E 66 021403 (2002).CrossRefGoogle Scholar
18.Chen, S.H., Mallamace, F., Faraone, A., Gambadauro, P., Lombardo, D., and Chen, W.R., Eur. Phys. J. E 9 (2002) p. 283.CrossRefGoogle Scholar
19.Kulkarni, A.M., Dixit, N.M., and Zukoski, C.F., Faraday Discuss. 123 (2003) p. 37.CrossRefGoogle Scholar
20.Brinker, C.J. and Scherer, G.W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990).Google Scholar
21.Sorensen, C.M., Aerosol Sci. Technol. 35 (2001) p. 648.CrossRefGoogle Scholar
22.Romer, S., Urban, C., Lobaskin, V., Scheffold, F., Stradner, A., Kohlbrecher, J., and Schurtenberger, P., J. Appl. Crystallogr. 36 (2003) p. 1.CrossRefGoogle Scholar
23.Schurtenberger, P., Bissig, H., Rojas, L., Vavrin, R., Stradner, A., Romer, S., Scheffold, F., and Trappe, V., in Mesoscale Phenomena in Fluid Systems, edited by Case, F. and Alexandridis, P., ACS Symposium Series 861 (American Chemical Society, Washington, DC, 2003) p. 143.CrossRefGoogle Scholar
24.Weitz, D.A., Zhu, J.X., Durian, D.J., and Pine, D.J., in Structure and Dynamics of Strongly Interacting Colloids and Supramolecular Aggregates in Solution, edited by Chen, S.-H., Huang, J.S., and Tartaglia, P. (Kluwer Academic Publishers, Dordrecht, 1992) p. 731.CrossRefGoogle Scholar
25.Egelhaaf, S.U. and Schurtenberger, P., Phys. Rev. Lett. 82 (1999) p. 2804.CrossRefGoogle Scholar
26.Egelhaaf, S.U., Leng, J., Salonen, A., Schurtenberger, P., and Cates, M., in Proc. of Self Assembly: the Future, edited by Robinson, B., Eastoe, J., and Hatton, A. (CRC Press, Boca Raton, FL, 2003) in press.Google Scholar
27.Butler, P., Curr. Opin. Colloid Interface Sci. 4 (1999) p. 214.CrossRefGoogle Scholar
28.Diat, O., Roux, D., and Nallet, F., J. Phys. II 3 (1993) p. 1427.Google Scholar
29.Butler, P.D., Magid, L.J., Hamilton, W.A., Hayter, J.B., Hammouda, B., and Kreke, P.J., J. Phys. Chem. 100 (1996) p. 442.CrossRefGoogle Scholar
30.Porcar, L., Hamilton, W.A., Butler, P.D., and Warr, G.G., Phys. Rev. Lett. 89 168301 (2002).CrossRefGoogle Scholar
31.Hamilton, W.A., Butler, P.D., Baker, S.M., Smith, G.S., Hayter, J.B., Magid, L.J., and Pynn, R., Phys. Rev. Lett. 72 (1994) p. 2219.CrossRefGoogle Scholar
32.Hamilton, W.A., Butler, P.D., Magid, L.J., Han, Z., and Slawecki, T.M., Phys. Rev. E 60 (1999) p. R1146.CrossRefGoogle Scholar
33.Higgins, J.S. and Benoit, H.C., Polymers and Neutron Scattering, Chapter 3, Oxford Series on Neutron Scattering in Condensed Matter, No. 8 (Clarendon Press, Oxford, 1994).Google Scholar
34.Soles, C.L., Douglas, J.F., Wu, W.-I., and Dimeo, R.M., Phys. Rev. Lett. 88 037401 (2002).CrossRefGoogle Scholar
35.Mao, G.M., Saboungi, M.-L., Price, D.L., Armand, M.B., and Howells, W.S., Phys. Rev. Lett. 84 (2000) p. 5536.CrossRefGoogle Scholar
36.Mao, G.M., Saboungi, M.-L., Price, D.L., Armand, M., Mezei, F., and Pouget, S., Macromole-cules 35 (2002) p. 415.CrossRefGoogle Scholar
37.Mao, G., Perea, R.F., Howells, W.S., Price, D.L., and Saboungi, M.-L., Nature 405 (2000) p. 163.CrossRefGoogle Scholar
38.Karlsson, C., Best, A.S., Swenson, J., Howells, W.S., and Børjesson, L., J. Chem. Phys. 118 (2003) p. 4206.CrossRefGoogle Scholar
39.Hellweg, T., Kratz, K., Pouget, S., and Eimer, W., Colloids Surf., A Physicochem. Eng. Aspects 202 (2002) p. 223.CrossRefGoogle Scholar
40.Zilman, A.G. and Granek, R., Phys. Rev. Lett. 77 (1996) p. 4788.CrossRefGoogle Scholar
41.Yang, B.-S., Lal, J., Mihailescu, M., Monkenbusch, M., Richter, D., Huang, J.S., Kohn, J., Russel, W.B., and Prud'homme, R.K., Langmuir 18 (2002) p. 6.CrossRefGoogle Scholar
42.Mihailescu, M., Monkenbusch, M., Endo, H., Allgaier, J., Gompper, G., Stellbrink, J., Richter, D., Jakobs, B., Sottmann, T., and Farago, B., J. Chem. Phys. 115 (2001) p. 9563.CrossRefGoogle Scholar
43.Seto, H., Kato, T., Monkenbusch, M., Takeda, T., Kawabata, Y., Nagao, M., Okuhara, D., Imai, M., and Komura, S., J. Phys. Chem. Solids 60 (1999) p. 1371.CrossRefGoogle Scholar
44.Magid, L., Veith, B., Butler, P., Rosov, N., and Bossev, D. (unpublished).Google Scholar
45.Wischnewski, A., Monkenbusch, M., Willner, L., Richter, D., and Kali, G., Phys. Rev. Lett. 90 058302 (2003).CrossRefGoogle Scholar