Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-18T20:45:53.305Z Has data issue: false hasContentIssue false

Characterization of Porous Solids

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Progress in the synthesis and engineering of advanced porous materials demands better pore structure characterization. The analysis of pore structure is complicated by (1) the wide range in pore sizes observed, from molecular (<1 nm) to macroscopic (>1 mm) dimensions, (2) complex pore shapes and connectivities, (3) chemical and physical heterogeneities, and (4) pore structure changes that can occur during characterization.

The required pore structure information varies with application. Bulk density and the pore-size distribution are needed for thermal insulation. In this case, the dimension of interest is the so-called hydraulic radius since, for small pores, the gas-phase conductivity is proportional to the mean hydraulic radius to the mean free path. A few large but isolated pores will significantly affect conductivity but will go undetected in typical gas-absorption methods. In contrast, for separations, bottlenecks control performance. For transport, such as migration through geologic formations, both the pore-size distribution and pore connectivity are important. For adsorption, surface area and pore size are the relevant factors. Finally, the conventional concepts of pore structure lose meaning as the pore size approaches molecular dimensions, typical of adsorbents and gas-separation membranes.

Type
Engineered Porous Materials
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T., Pure & Appl. Chem. 57 (1985) p. 603.CrossRefGoogle Scholar
2.Schaefer, D.W., MRS Bulletin XIX (4) (1994).Google Scholar
3.Mukaida, K., Powder Tech. 29 (1981) p. 99.CrossRefGoogle Scholar
4.Langmuir, I., J. Am. Chem. Soc. 40 (1919) p. 1361.CrossRefGoogle Scholar
5.Ritter, H.L. and Drake, L.C., Ind. Eng. Chem. Anal. Ed. 17 (1945) p. 782.CrossRefGoogle Scholar
6.Mason, G., J. Colloid Interface Sci. 41 (1972) p. 208.CrossRefGoogle Scholar
7.Higgins, J.S. and Stein, R.S., J. Appl. Crystallogr. 11 (1978) p. 346.CrossRefGoogle Scholar
8.Beaucage, G. and Schaefer, D.W., J. Non-Cryst. Solids, in press.Google Scholar
9.Schmidt, P.W., J. Appl. Crystallogr. 24 (1991) p. 414.CrossRefGoogle Scholar
10.Schaefer, D.W. and Keefer, K.D., in Better Ceramics Through Chemistry II, edited by Brinker, C.J., Clark, D.E., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986) p. 277. See also Ref. 2.Google Scholar
11.Bale, H.D. and Schmidt, P.W, Phys. Rev. Lett. 53 (1984) p. 596.CrossRefGoogle Scholar
12.Pfeifer, P., Cole, M.W., and Krim, J., Phys. Rev. Lett. 62 (1989) p. 1997.CrossRefGoogle Scholar
13.Brown, R.J.S., Am. Phys. Soc. Bull, Ser. II 21b (1956).Google Scholar
14.Engelhardt, G. and Michel, D., High-Resolution Solid-State NMR of Silicates and Zeolites (Wiley and Sons, Chichester, 1987).Google Scholar
15.Farrar, T.C., An Introduction to Pulse NMR Spectroscopy (The Farragut Press, Chicago, 1987).Google Scholar
16.Derome, A.E., Modern NMR Techniques For Chemistry Research (Pergamon Press, Oxford, 1987).Google Scholar
17.Fyfe, C.A., Solid State NMR For Chemists (CFC Press, Guelph, 1983).Google Scholar
18.Senturia, S.D. and Robinson, J.D., Soc. Pet. Eng. J. 10 (1970) p. 237.CrossRefGoogle Scholar
19.Brownstein, K.R. and Tarr, C.E., J. Magn. Reson. 26 (1977) p. 17.Google Scholar
20.Almagor, E. and Belfort, G., J. Colloid Interface Sci. 66 (1978) p. 146.CrossRefGoogle Scholar
21.Cohen, M.H. and Mendelson, K.S., J. Appl. Phys. 53 (1982) p. 1127.CrossRefGoogle Scholar
22.Tarczon, J.C. and Halperin, W.P., Phys. Rev. B 32 (1985) p. 2798.CrossRefGoogle Scholar
23.Schmidt, E.J., Velasco, K.K., and Nur, A. M.J. Appl. Phys. 59 (1986) p. 2788.CrossRefGoogle Scholar
24.Gallegos, D.P., Munn, K., Smith, D.M., and Stermer, D.L., J. Colloid Interface Sci. 119 (1987) p. 127.CrossRefGoogle Scholar
25.Jameson, A.K., Jameson, C.J., and Gutowsky, H.S., J. Chem. Phys. 53 (1970) p. 2310.CrossRefGoogle Scholar
26.Ito, T. and Fraissard, J., J. Chem. Phys. 76 (1982) p. 5225.CrossRefGoogle Scholar
27.Ripmeester, J.A. and Davidson, D.W., J. Mol. Struct. 75 (1981) p. 67.CrossRefGoogle Scholar
28.Jameson, C.J., Jameson, A.K., Gerald, R. II, and de Dios, A.C., J. Chem. Phys. 96 (1992) p. 1676.CrossRefGoogle Scholar
29. See Reference 28, p. 1690.Google Scholar
30.Ripmeester, J.A. and Ratcliffe, C.I., J. Phys. Chem. 94 (1990) p. 7652.CrossRefGoogle Scholar
31.Ackerman, W.C., Hua, D.W., Kim, Y.W., Huling, J.C., and Smith, D.M., Characterization of Porous Solids III (Elsevier) in print.Google Scholar
32.Davis, P.J., Brinker, C.J., and Smith, D.M., J. Non-Cryst. Solids 142 (1992) p. 189.CrossRefGoogle Scholar