Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T20:49:04.307Z Has data issue: false hasContentIssue false

The challenge of developing rechargeable magnesium batteries

Published online by Cambridge University Press:  09 May 2014

Ivgeni Shterenberg
Affiliation:
Chemistry Department, Bar-Ilan University, Israel; [email protected]
Michael Salama
Affiliation:
Chemistry Department, Bar-Ilan University, Israel; [email protected]
Yossi Gofer
Affiliation:
Chemistry Department, Bar-Ilan University, Israel; [email protected]
Elena Levi
Affiliation:
Department of Chemistry, Bar-Ilan University, Israel; [email protected]
Doron Aurbach
Affiliation:
Department of Chemistry, Bar-Ilan University, Israel; [email protected]
Get access

Abstract

The high specific capacity, reactivity, and abundance of magnesium in the earth’s crust and the relatively good safety features of Mg metal, despite its being a reactive metal, drive intensive efforts to develop rechargeable Mg batteries as a follow-up to the success of Li-ion battery technology. However, Mg anodes cannot function in usual non-aqueous electrolyte solutions. Consequently, it is important to develop unique, complex solutions for reversible Mg metal anodes. Also, finding relevant cathode materials that can reversibly insert bivalent Mg ions is a great challenge. In this article, we review the efforts and success in the development of several families of electrolyte solutions for secondary Mg batteries, in which Mg anodes behave fully reversibly, but also exhibit the necessary wide electrochemical window. We also review attempts to develop positive electrodes for rechargeable Mg batteries. The first generation of secondary Mg batteries has already been demonstrated, but their specific energy density remains relatively low. The challenge now is to develop novel Mg battery prototypes that possess high energy density.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gofer, Y., Chusid, O., Aurbach, D., in Encyclopedia of Electrochemical Power Sources, Garche, J., Ed. (Elsevier, Amsterdam, 2009), pp. 285301.Google Scholar
Gaddum, L.W., French, H.E., J. Am. Chem. Soc. 49, 1295 (1927).Google Scholar
Gregory, T.D., Hoffman, R.J., Winterton, R.C., J. Electrochem. Soc. 137, 775 (1990).Google Scholar
Chevrel, R., Sergent, M., Prigent, J., J. Solid State Chem. 3, 515 (1971).Google Scholar
Aurbach, D., Lu, Z., Schechter, A., Gofer, Y., Gizbar, H., Turgeman, R., Cohen, Y., Moshkovich, M., Levi, E., Nature 407, 724 (2000).Google Scholar
Gofer, Y., Turgeman, R., Cohen, H., Aurbach, D., Langmuir 19, 2344 (2003).Google Scholar
Amir, N., Vestfrid, Y., Chusid, O., Gofer, Y., Aurbach, D., J. Power Sources 174, 1234 (2007).CrossRefGoogle Scholar
Aurbach, D., Gizbar, H., Schechter, A., Chusid, O., Gottlieb, H.E., Gofer, Y., Goldberg, I., J. Electrochem. Soc. 149, A115 (2002).CrossRefGoogle Scholar
Chusid, O., Gofer, Y., Gizbar, H., Vestfrid, Y., Levi, E., Aurbach, D., Riech, I., Adv. Mater. 15, 627 (2003).CrossRefGoogle Scholar
Vestfried, Y., Chusid, O., Goffer, Y., Aped, P., Aurbach, D., Organometallics 26, 3130 (2007).Google Scholar
Pour, N., Gofer, Y., Major, D.T., Aurbach, D., J. Am. Chem. Soc. 133, 6270 (2011).CrossRefGoogle Scholar
Liebenow, C., Yang, Z., Lobitz, P., Electrochem. Commun. 2, 641 (2000).CrossRefGoogle Scholar
Kim, H.S., Arthur, T.S., Allred, G.D., Zajicek, J., Newman, J.G., Rodnyansky, A.E., Oliver, A.G., Boggess, W.C., Muldoon, J., Nat. Commun. 2, 427 (2011).CrossRefGoogle Scholar
Doe, R.E., Han, R., Hwang, J., Gmitter, A.J., Shterenberg, I., Yoo, H.D., Pour, N., Aurbach, D., Chem. Commun. 50, 243 (2014).Google Scholar
Shimamura, O., Yoshimoto, N., Matsumoto, M., Egashia, M., Morita, M., J. Power Sources 196, 1586 (2011).Google Scholar
Tran, T.T., Lamanna, W.M., Obrovac, M.N., J. Electrochem. Soc. 159, A2005 (2012).CrossRefGoogle Scholar
Shannon, R., Acta Crystallogr. Sect. A: Found. Crystallogr. 32, 751 (1976).Google Scholar
Amatucci, G.G., Badway, F., Singhal, A., Beaudoin, B., Skandan, G., Bowmer, T., Plitza, I., Pereira, N., Chapman, T., Jaworski, R., J. Electrochem. Soc. 148, A940 (2001).Google Scholar
Aurbach, D., Weissman, I., Gofer, Y., Levi, E., Chem. Rec. 3, 61 (2003).CrossRefGoogle Scholar
Aurbach, D., Suresh, G.S., Levi, E., Mitelman, A., Mizrahi, O., Chusid, O., Brunelli, M., Adv. Mater. 19, 4260 (2007).Google Scholar
Mitelman, A., Levi, M.D., Lancry, E., Levi, E., Aurbach, D., Chem. Commun. 44, 4212 (2007).CrossRefGoogle Scholar
Levi, E., Levi, M.D., Chasid, O., Aurbach, D., J. Electroceram. 22, 13 (2009).CrossRefGoogle Scholar
Levi, E., Gershinsky, G., Aurbach, D., Isnard, O., Ceder, G., Chem. Mater. 21, 1390 (2009).Google Scholar
Lancry, E., Levi, E., Mitelman, A., Malovany, S., Aurbach, D., J. Solid State Chem. 179, 1879 (2006).Google Scholar
Gershinsky, G., Haik, O., Salitra, G., Grinblat, J., Levi, E., Nessim, G.D., Zinigrad, E., Aurbach, D., J. Solid State Chem. 188, 50 (2012).Google Scholar
Mohtadi, R., Matsui, M., Arthur, T.S., Hwang, S.-J., Angew. Chem. Int. Ed. 51 (39), 9780 (2012).Google Scholar
Shao, Y., Liu, T., Li, G., Gu, M., Nie, Z., Engelhard, M., Xiao, J., Lv, D., Wang, C., Zhang, J.G., Liu, J., Sci. Rep. 3, 3130 (2013).Google Scholar
Zhu, J., Guo, Y., Yang, J., Nuli, Y., Zhang, F., Wang, J., Hirano, S.-I., J. Power Sources 248, 690 (2014).CrossRefGoogle Scholar
Seghir, S., Boulanger, C., Diliberto, S., Potel, M., Lecuire, J.M., Electrochim. Acta 55, 1097 (2010).Google Scholar
Guyot, E., Seghir, S., Lecuire, J.M., Boulanger, C., Levi, M.D., Shilina, Y., Dargel, V., Aurbach, D., J. Electrochem. Soc. 160, A420 (2013).Google Scholar
Levi, E., Gofer, Y., Aurbach, D., Chem. Mater. 22, 860 (2010).Google Scholar
Novak, P., Desilvestro, J., J. Electrochem. Soc. 140, 140 (1993).Google Scholar
Novák, P., Scheifele, W., Joho, F., Haas, O., J. Electrochem. Soc. 142, 2544 (1995).CrossRefGoogle Scholar
Novák, P., Scheifele, W., Haas, O., J. Power Sources 54, 479 (1995).CrossRefGoogle Scholar
Spahr, M.E., Novak, P., Haas, O., Nesper, R., J. Power Sources 54, 346 (1995).Google Scholar
Sanchez, L., Pereira-Ramos, J.-P., J. Mater. Chem. 7, 471 (1997).Google Scholar
Feng, Z., Yang, J., NuLi, Y., Wang, J., J. Power Sources 184, 604 (2008).CrossRefGoogle Scholar
Zheng, Y., NuLi, Y., Chen, Q., Wang, Y., Yang, J., Wang, J., Electrochim. Acta 66, 75 (2012).CrossRefGoogle Scholar
Makino, K., Katayama, Y., Miura, T., Kishi, T., J. Power Sources 99, 66 (2001).CrossRefGoogle Scholar
Makino, K., Katayama, Y., Miura, T., Kishi, T., J. Power Sources 112, 85 (2002).CrossRefGoogle Scholar
Zhang, R., Yu, X., Nam, K.-W., Ling, C., Arthur, T.S., Song, W., Knapp, A.M., Ehrlich, S.N., Yang, X.-Q., Matsui, M., Electrochem. Commun. 23, 110 (2012).CrossRefGoogle Scholar
Rasul, S., Suzuki, S., Yamaguchi, S., Miyayama, M., Electrochim. Acta 82, 243 (2012).Google Scholar
Giraudet, J., Claves, D., Guerin, K., Dubois, M., Houdayer, A., Masin, F., Hamwi, A., J. Power Sources 173, 592 (2007).Google Scholar
Rani, J.V., Rushi, S.B., Kanakaiah, V., Palaniappan, S., J. Electrochem. Soc. 158, A1031 (2011).Google Scholar
Ichitsubo, T., Adachi, T., Yagi, S., Doi, T., J. Mater. Chem. 21, 11764 (2011).Google Scholar
Ling, C., Mizuno, F., Chem. Mater. 25, 3062 (2013).Google Scholar
Tao, Z.L., Xu, L.N., Gou, X.L., Chen, J., Yuan, H.T., Chem. Commun. 2080 (2004).CrossRefGoogle Scholar
Liang, Y., Feng, R., Yang, S., Ma, H., Liang, J., Chen, J., Adv. Mater. 23, 640 (2011).Google Scholar
Imamura, D., Miyayama, M., Solid State Ionics 161, 173 (2003).Google Scholar
Imamura, D., Miyayama, M., Hibino, M., Kudo, T., J. Electrochem. Soc. 150, A753 (2003).Google Scholar
Petkov, V., Zavalij, P.Y., Lutta, S., Whittingham, M.S., Parvanov, V., Shastri, S., Phys. Rev. B 69, 085410 (2004).Google Scholar
Sudant, G., Baudrin, E., Dunn, B., Tarascon, J.-M., J. Electrochem. Soc. 151, A666 (2004).CrossRefGoogle Scholar
Chang, K., Chen, W., Ma, L., Li, H., Li, H., Huang, F., Xu, Z., Zhang, Q., Lee, J.-Y., J. Mater. Chem. 21, 6251 (2011).Google Scholar