Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T14:46:56.889Z Has data issue: false hasContentIssue false

Catalytic substrates for graphene growth

Published online by Cambridge University Press:  10 November 2017

Fangzhu Qing
Affiliation:
University of Electronic Science and Technology of China, China; [email protected]
Changqing Shen
Affiliation:
University of Electronic Science and Technology of China, China; [email protected]
Ruitao Jia
Affiliation:
University of Electronic Science and Technology of China, China; [email protected]
Longlong Zhan
Affiliation:
University of Electronic Science and Technology of China, China; [email protected]
Xuesong Li
Affiliation:
University of Electronic Science and Technology of China, China; [email protected]
Get access

Abstract

Because of its unique properties and promising applications, graphene has attracted great interest from both academia and industry in the last decade. For studies on graphene as well as for applications, it is essential to develop techniques to prepare graphene in a controllable way. Graphene can be produced in the form of nano-/microflakes using a top-down method by the exfoliation of graphite or the reduction of graphene oxide, or in the form of a film or foam in a bottom-up method, predominantly by chemical vapor deposition of carbon precursors on catalytic substrates. This article focuses on the catalytic substrates, especially metals, used for graphene growth. We also discuss graphene growth mechanisms and kinetics, control of the number of graphene layers and their stacking order, engineering of large-area graphene single crystals, as well as low-temperature growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Geim, A.K., Novoselov, K.S., Nat. Mater. 6, 183 (2007).Google Scholar
Li, X., Colombo, L., Ruoff, R.S., Adv. Mater. 28, 6247 (2016).CrossRefGoogle ScholarPubMed
Batzill, M., Surf. Sci. Rep. 67, 83 (2012).Google Scholar
Bartholomew, C.H., Appl. Catal. A Gen. 212, 17 (2001).CrossRefGoogle Scholar
Sutter, P.W., Flege, J.-I., Sutter, E.A., Nat. Mater. 7, 406 (2008).Google Scholar
Yu, Q., Lian, J., Siriponglert, S., Li, H., Chen, Y.P., Pei, S.-S., Appl. Phys. Lett. 93, 113103 (2008).CrossRefGoogle Scholar
Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., Kong, J., Nano Lett. 9, 30 (2009).Google Scholar
Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.-H., Kim, P., Choi, J.-Y., Hong, B.H., Nature 457, 706 (2009).CrossRefGoogle Scholar
Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S., Science 324, 1312 (2009).CrossRefGoogle Scholar
Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., Piner, R.D., Colombo, L., Ruoff, R.S., Nano Lett. 9, 4359 (2009).Google Scholar
Chen, X., Wu, B., Liu, Y., Chem. Soc. Rev. 45, 2057 (2016).Google Scholar
Chen, Z., Ren, W., Gao, L., Liu, B., Pei, S., Cheng, H.-M., Nat. Mater. 10, 424 (2011).CrossRefGoogle Scholar
Li, X., Cai, W., Colombo, L., Ruoff, R.S., Nano Lett. 9, 4268 (2009).Google Scholar
Eizenberg, M., Blakely, J.M., Surf. Sci. 82, 228 (1979).Google Scholar
McCann, E., Koshino, M., Rep. Prog. Phys. 76, 056503 (2013).Google Scholar
Sun, Z., Raji, A.-R.O., Zhu, Y., Xiang, C., Yan, Z., Kittrel, C., Samuel, E.L.G., Tour, J.M., ACS Nano 6, 9790 (2012).CrossRefGoogle Scholar
Liu, Q., Gong, Y., Wilt, J.S., Sakidja, R., Wu, J., Carbon 93, 199 (2015).Google Scholar
Yan, K., Peng, H., Zhou, Y., Li, H., Liu, Z., Nano Lett. 11, 1106 (2011).CrossRefGoogle Scholar
Liu, L., Zhou, H., Cheng, R., Yu, W.J., Liu, Y., Chen, Y., Shaw, J., Zhong, X., Huang, Y., Duan, X., ACS Nano 6, 8241 (2012).Google Scholar
Han, J., Lee, J.-Y., Yeo, J.-S., Carbon 105, 205 (2016).Google Scholar
Ta, H.Q., Perello, D.J., Duong, D.L., Han, G.H., Gorantla, S., Nguyen, V.L., Bachmatiuk, A., Rotkin, S.V., Lee, Y.H., Rummeli, M.H., Nano Lett. 16, 6403 (2016).Google Scholar
Nie, S., Walter, A.L., Bartelt, N.C., Starodub, E., Bostwick, A., Rotenberg, E., McCarty, K.F., ACS Nano 5, 2298 (2011).Google Scholar
Nie, S., Wu, W., Xing, S., Yu, Q., Bao, J., Pei, S.-S., McCarty, K.F., New J. Phys. 14, 093028 (2012).CrossRefGoogle Scholar
Li, Q., Chou, H., Zhong, J.-H., Liu, J.-Y., Dolocan, A., Zhang, J., Zhou, Y., Ruoff, R.S., Chen, S., Cai, W., Nano Lett. 13, 486 (2013).Google Scholar
Fang, W., Hsu, A.L., Caudillo, R., Song, Y., Birdwell, A.G., Zakar, E., Kalbac, M., Dubey, M., Palacios, T., Dresselhaus, M.S., Araujo, P.T., Kong, J., Nano Lett. 13, 1541 (2013).CrossRefGoogle Scholar
Fang, W., Hsu, A.L., Song, Y., Birdwell, A.G., Amani, M., Dubey, M., Dresselhaus, M.S., Palacios, T., Kong, J., ACS Nano 8, 6491 (2014).Google Scholar
Zhao, Z., Shan, Z., Zhang, C., Li, Q., Tian, B., Huang, Z., Lin, W., Chen, X., Ji, H., Zhang, W., Cai, W., Small 11, 1418 (2015).Google Scholar
Hao, Y., Wang, L., Liu, Y., Chen, H., Wang, X., Tan, C., Nie, S., Suk, J.W., Jiang, T., Liang, T., Xiao, J., Ye, W., Dean, C.R., Yakobson, B.I., McCarty, K.F., Kim, P., Hone, J., Colombo, L., Ruoff, R.S., Nat. Nanotechnol. 11, 426 (2016).Google Scholar
Zhang, X., Wang, L., Xin, J., Yakobson, B.I., Ding, F., J. Am. Chem. Soc. 136, 3040 (2014).Google Scholar
Wu, P., Zhai, X., Li, Z., Yang, J., J. Phys. Chem. C 118, 6201 (2014).Google Scholar
Liu, L., Zhou, H., Cheng, R., Chen, Y., Lin, Y.-C., Qu, Y., Bai, J., Ivanov, I.A., Liu, G., Huang, Y., Duan, X., J. Mater. Chem. 22, 1498 (2012).Google Scholar
Luo, Z., Yu, T., Shang, J., Wang, Y., Lim, S., Liu, L., Gurzadyan, G.G., Shen, Z., Lin, J., Adv. Funct. Mater. 21, 911 (2011).CrossRefGoogle Scholar
Lee, K., Ye, J., Carbon 100, 441 (2016).Google Scholar
Wu, Y., Chou, H., Ji, H., Wu, Q., Chen, S., Jiang, W., Hao, Y., Kang, J., Ren, Y., Piner, R.D., Ruoff, R.S., ACS Nano 6, 7731 (2012).CrossRefGoogle Scholar
Addou, R., Dahal, A., Sutter, P., Batzill, M., Appl. Phys. Lett. 100, 021601 (2012).Google Scholar
Weatherup, R.S., Dlubak, B., Hofmann, S., ACS Nano 6, 9996 (2012).Google Scholar
Xiao, K., Wu, H., Lv, H., Wu, X., Qian, H., Nanoscale 5, 5524 (2013).Google Scholar
Huang, P.Y., Ruiz-Vargas, C.S., van der Zande, A.M., Whitney, W.S., Levendorf, M.P., Kevek, J.W., Garg, S., Alden, J.S., Hustedt, C.J., Zhu, Y., Park, J., McEuen, P.L., Muller, D.A., Nature 469, 389 (2011).Google Scholar
Li, X., Magnuson, C.W., Venugopal, A., An, J., Suk, J.W., Han, B., Borysiak, M., Cai, W., Velamakanni, A., Zhu, Y., Fu, L., Vogel, E.M., Voelkl, E., Colombo, L., Ruoff, R.S., Nano Lett. 10, 4328 (2010).Google Scholar
Yan, Z., Lin, J., Peng, Z., Sun, Z., Zhu, Y., Li, L., Xiang, C., Samuel, E.L., Kittrell, C., Tour, J.M., ACS Nano 6, 9110 (2012).Google Scholar
Hao, Y., Bharathi, M.S., Wang, L., Liu, Y., Chen, H., Nie, S., Wang, X., Chou, H., Tan, C., Fallahazad, B., Ramanarayan, H., Magnuson, C.W., Tutuc, E., Yakobson, B.I., McCarty, K.F., Zhang, Y.-W., Kim, P., Hone, J., Colombo, L., Ruoff, R.S., Science 342, 720 (2013).CrossRefGoogle Scholar
Zhou, H., Yu, W.J., Liu, L., Cheng, R., Chen, Y., Huang, X., Liu, Y., Wang, Y., Huang, Y., Duan, X., Nat. Commun. 4, 3096 (2013).Google Scholar
Guo, W., Jing, F., Xiao, J., Zhou, C., Lin, Y., Wang, S., Adv. Mater. 28, 3152 (2016).Google Scholar
Xu, X., Zhang, Z., Qiu, L., Zhuang, J., Zhang, L., Wang, H., Liao, C., Song, H., Qiao, R., Gao, P., Hu, Z., Liao, L., Liao, Z., Yu, D., Wang, E., Ding, F., Peng, H., Liu, K., Nat. Nanotechnol. 11, 930 (2016).Google Scholar
Wu, T., Zhang, X., Yuan, Q., Xue, J., Lu, G., Liu, Z., Wang, H., Wang, H., Ding, F., Yu, Q., Xie, X., Jiang, M., Nat. Mater. 15, 43 (2015).Google Scholar
Geng, D., Wang, H., Yu, G., Adv. Mater. 27, 2821 (2015).Google Scholar
Artyukhov, V.I., Liu, Y., Yakobson, B.I., Proc. Natl. Acad. Sci. U.S.A. 109, 15136 (2012).Google Scholar
Jacobberger, R.M., Arnold, M.S., Chem. Mater. 25, 871 (2013).Google Scholar
Nguyen, V.L., Shin, B.G., Duong, D.L., Kim, S.T., Perello, D., Lim, Y.J., Yuan, Q.H., Ding, F., Jeong, H.Y., Shin, H.S., Lee, S.M., Chae, S.H., Vu, Q.A., Lee, S.H., Lee, Y.H., Adv. Mater. 27, 1376 (2015).Google Scholar
Xu, X., Zhang, Z., Dong, J., Yi, D., Niu, J., Wu, M., Lin, L., Yin, R., Li, M., Zhou, J., Wang, S., Sun, J., Duan, X., Gao, P., Jiang, Y., Wu, X., Peng, H., Ruoff, R.S., Liu, Z., Yu, D., Wang, E., Ding, F., Liu, K., Sci. Bull. 62, 1074 (2017).Google Scholar
Choi, J.-H., Li, Z., Cui, P., Fan, X., Zhang, H., Zeng, C., Zhang, Z., Sci. Rep. 3, 1925 (2013).Google Scholar
Li, Z., Wu, P., Wang, C., Fan, X., Zhang, W., Zhai, X., Zeng, C., Li, Z., Yang, J., Hou, J., ACS Nano 5, 3385 (2011).Google Scholar
Zhang, B., Lee, W.H., Piner, R., Kholmanov, I., Wu, Y., Li, H., Ji, H., Ruoff, R.S., ACS Nano 6, 2471 (2012).Google Scholar
Jang, J., Son, M., Chung, S., Kim, K., Cho, C., Lee, B.H., Ham, M.-H., Sci. Rep. 5, 17955 (2015).Google Scholar
Lee, E., Lee, H.C., Jo, S.B., Lee, H., Lee, N.S., Park, C.G., Lee, S.K., Kim, H.H., Bong, H., Cho, K., Adv. Funct. Mater. 26, 562 (2016).Google Scholar
Weatherup, R.S., Bayer, B.C., Blume, R., Ducati, C., Baehtz, C., Schloegl, R., Hofmann, S., Nano Lett. 11, 4154 (2011).Google Scholar
Guermoune, A., Chari, T., Popescu, F., Sabri, S.S., Guillemette, J., Skulason, H.S., Szkopek, T., Siaj, M., Carbon 49, 4204 (2011).Google Scholar
Qing, F., Jia, R., Li, B.-W., Liu, C., Li, C., Peng, B., Deng, L., Zhang, W., Li, Y., Ruoff, R.S., Li, X., 2D Mater. 4, 025089 (2017).Google Scholar
Boyd, D.A., Lin, W.H., Hsu, C.C., Teague, M.L., Chen, C.C., Lo, Y.Y., Chan, W.Y., Su, W.B., Cheng, T.C., Chang, C.S., Wu, C.I., Yeh, N.C., Nat. Commun. 6, 6620 (2015).Google Scholar
Jacobberger, R.M., Levesque, P.L., Xu, F., Wu, M.-Y., Choubak, S., Desjardins, P., Martel, R., Arnold, M.S., J. Phys. Chem. C 119, 11516 (2015).Google Scholar