Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T13:31:51.490Z Has data issue: false hasContentIssue false

Carbon Nanotubes

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Nanostructured materials have recently attracted the attention of some materials scientists. Because of their unique properties occurring in low-dimensional structures, nanostructured materials are sought for their possible industrial applications. This article introduces a specific nanostructured material, the carbon nanorube—an extremely thin filaments of graphite considered to be a quasi one-dimensional structure, with a simple well-understood atomic structure. Because of these qualities, the carbon nanorube has elicited great interest from diverse fields of basic and technological research. My discovery of carbon nanotubes was inspired by the discovery of C60 and its family and their mass production. The carbon nanotubes were serendipitously found during the examination of fullerene materials by a high-resolution transmission electron microscope (HRTEM). Since introducing this technique in 1971, I have been employing HRTEM to characterize the microscopic structural details of a variety of materials, including carbonaceous materials. So far, only nanotubes have been revealed with HRTEM.

Interest in the carbon nanorube is multifold. Academically the nanotube is an ideal model structure for a quasi one-dimensional structure since its known atomic structure makes computer simulations more reliable. It is worthwhile to study both rare structures of graphite—cylindrical forms with a helical arrangement of carbon atom hexagons and flexible graphitic sheets containing topological surface defects. These materials may find practical uses as tough graphite fibers, molecular wires, catalyst supports, molecular adsorbers, and so on.

Type
Fullerenes
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., and Smalley, R.E., Nature (London) 318 (1985) p. 162.CrossRefGoogle Scholar
2.Krätschmer, W., Lamb, L.D., Fostiropoulos, K., and Huffman, D.R., Nature (London) 347 (1990) p. 354.CrossRefGoogle Scholar
3.Iijima, S., Nature (London) 354 (1991) p. 56.CrossRefGoogle Scholar
4.Iijima, S., J. Cryst. Growth 50 (1980) p. 657.CrossRefGoogle Scholar
5.Iijima, S., J. Phys Chem. 91 (1987) p. 3466.CrossRefGoogle Scholar
6.Iijima, S., J. Microscopy 119 (1980) p. 99.CrossRefGoogle Scholar
7.Iijima, S., Chem. Scripta 14 (19781979) p. 117.Google Scholar
8.Iijima, S., Aikawa, Y., and Baba, K., J. Mater. Res. 6 (1991) p. 1491.CrossRefGoogle Scholar
9.Iijima, S., J. Appl. Phys. 42 (1971) p. 5891.CrossRefGoogle Scholar
10.Kroto, H.W., Science 242 (1988) p. 1139.CrossRefGoogle Scholar
11.Iijima, S. and Ichihashi, T., Nature (London) 361 (1993) p. 603.CrossRefGoogle Scholar
12.Hayashi, C., Phys. Today (December 1987) p. 1.Google Scholar
13.Ugarte, D., Nature (London) 359 (1992) p. 707.CrossRefGoogle Scholar
14.Ebbesen, T.W. and Ajayan, P.M., Nature (London) 358 (1992) p. 220.CrossRefGoogle Scholar
15.Ebbesen, T.W., Ajayan, P.M., Hiura, H., and Tanigaki, K., Nature (London) 367 (1994) p. 519.CrossRefGoogle Scholar
16.Bacon, R., J. Appl. Phys. 31 (1960) p. 283.CrossRefGoogle Scholar
17.Whittaker, E.J.W., Acta Crystallogr. 21 (1966) p. 461.CrossRefGoogle Scholar
18.Wada, K. and Yoshinaga, N., Am. Mineral. 54 (1969) p. 50.Google Scholar
19.Tenne, R., Margulis, L., Genut, M., and Hodes, G., Nature (London) 360 (1992) p. 444.CrossRefGoogle Scholar
20.Oberlin, A. and Endo, M., J. Cryst. Growth 32 (1976) p. 335.CrossRefGoogle Scholar
21.Iijima, S., Ichihashi, T., and Ando, Y., Nature (London) 356 (1992) p. 776.Google Scholar
22.deWit, R., J. Appl. Phys. 42 (1971) p. 3304.CrossRefGoogle Scholar
23.Manolopoulos, D.E., J. Chem. Soc. Faraday Trans. 87 (1991) p. 3103.CrossRefGoogle Scholar
24.Mackay, A.L. and Terrones, H., Nature (London) 352 (1991) p. 762.CrossRefGoogle Scholar
25.Lenosky, T., Gonze, X., Teter, M., and Elser, V., Nature (London) 355 (1992) p. 333.CrossRefGoogle Scholar
26.Vanderbilt, D. and Tersoff, J., Phys. Rev. Lett. 68 (1992) p. 511.CrossRefGoogle Scholar
27.Dunlap, B.I., Phys. Rev. B 46 (1992) p. 1933.CrossRefGoogle Scholar
28.Itoh, S., Ihara, S., Kitakami, J., Phys. Rev. B 47 (1993) p. 1703.CrossRefGoogle Scholar
29.Tibbetts, G.G., J. Cryst. Growth 66 (1984) p. 632.CrossRefGoogle Scholar
30.Iijima, S., Mater. Sci. Eng. B19 (1993) p. 172.CrossRefGoogle Scholar
31.Iijima, S., Ajayan, P.M., and Ichihashi, T., Phys. Rev. Lett. 69 (1992) p. 3100.CrossRefGoogle Scholar
32.Hamada, N., Sawada, S., and Oshiyama, A., Phys. Rev. Lett. 68 (1992) p. 1579.CrossRefGoogle Scholar
33.Mintmire, J.W., Dunlap, B.I., and White, C.T., Phys. Rev. Lett. 68 (1992), p. 631.CrossRefGoogle Scholar
34.Saito, R., Fujita, M., Dresselhaus, G., and Dresselhaus, M.S., Appl. Phys. Lett. 60 (1992) p. 2204.CrossRefGoogle Scholar
35.Bethune, D.S., Kiang, C-H., deVries, M.S., Gorman, G., Savoy, R., Vazques, J., and Beyers, R., Nature (London) 363 (1993) p. 605.CrossRefGoogle Scholar
36.Ajayan, P.M. and Iijima, S., Nature (London) 361 (1993) p. 333.CrossRefGoogle Scholar
37.Tsang, S.C., Harris, P.J.F., and Green, M.L.H., Nature (London) 362 (1993) p. 520.CrossRefGoogle Scholar
38.Ajayan, P.M., Ebbesen, T.W., Ichihashi, T., Iijima, S., Tanigaki, K., and Hiura, H., Nature 362 (1993), p. 522.CrossRefGoogle Scholar