Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T20:53:30.376Z Has data issue: false hasContentIssue false

Carbon nanotube photothermionics: Toward laser-pointer-driven cathodes for simple free-electron devices and systems

Published online by Cambridge University Press:  10 July 2017

Alireza Nojeh*
Affiliation:
Department of Electrical and Computer Engineering, Quantum Matter Institute, The University of British Columbia, Canada; [email protected]
Get access

Abstract

Light-induced generation of free electrons is of interest for a wide variety of vacuum electronic devices and systems. The properties of nanomaterials, stemming from their geometry and the strong manifestation of quantum phenomena in them, have opened up new avenues for developing new cathodes and exploring and exploiting electron emission. This article presents the heat trap effect—efficient localized heating of carbon nanotube arrays using light, leading to electron emission through the thermionic mechanism. This process requires unexpectedly modest amounts of optical power—available from sources such as handheld lasers—and dramatically simplifies the electron emitter. Potential applications, including thermionic and thermoelectric conversion for solar-energy harvesting and simple electron-beam systems, are also highlighted.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jensen, K.L., J. Appl. Phys. 102, 024911 (2007).CrossRefGoogle Scholar
Uchiyama, S., Takagi, Y., Niigaki, M., Kan, H., Kondoh, H., Appl. Phys. Lett. 86, 103511 (2005).CrossRefGoogle Scholar
Yang, Z.-P., Ci, L., Bur, J.A., Lin, S.-Y., Ajayan, P.M., Nano Lett. 8, 446 (2008).Google Scholar
Jakubinek, M.B., White, M.A., Li, G., Jayasinghe, C., Cho, W., Schulz, M.J., Shanov, V., Carbon 48, 3947 (2010).Google Scholar
Vahdani Moghaddam, M., Yaghoobi, P., Nojeh, A., Appl. Phys. Lett. 101, 253110 (2012).Google Scholar
Yaghoobi, P., Vahdani Moghaddam, M., Nojeh, A., Solid State Commun. 151, 1105 (2011).Google Scholar
Monshipouri, M., Abdi, Y., Darbari, S., Appl. Phys. Lett. 109, 203105 (2016).Google Scholar
Li, Z., Bai, B., Li, C., Dai, Q., Carbon 96, 641 (2016).Google Scholar
Hendrix, R., Deibel, J.A., Fairchild, S.B., Maruyama, B., Urbas, A., Walker, M., Brown, D., Proc. OSA Conf. Lasers Electro-Optics Appl. Technol. (2015), p. JW2A-53.Google Scholar
Yaghoobi, P., Vahdani Moghaddam, M., Nojeh, A., AIP Adv. 2, 042139 (2012).Google Scholar
Abdul Khalid, K.A., Leong, T.J., Mohamed, K., IEEE Trans. Electron Devices 63, 2231 (2016).Google Scholar
Dridi, K., Khoshaman, A., Nojeh, A., Sawatzky, G.A., Proc. 29th Int. Vac. Nanoelectron. Conf., Nojeh, A., Dridi, K., Voon, K., Chowdhury, M., Eds. (2016), p. 1.Google Scholar
Fan, H.D.E., “Laser-Induced Thermoelectric Energy Generation Using Carbon Nanotube Forests,” MASc thesis, The University of British Columbia, Vancouver, Canada (2015).Google Scholar
Lenert, A., Bierman, D.M., Nam, Y., Chan, W.R., Celanović, I., Soljačić, M., Wang, E.N., Nat. Nanotechnol. 9, 126 (2014).CrossRefGoogle Scholar
Vahdani Moghaddam, M., Nojeh, A., Proc. 57th Int. Conf. Electron Ion Photon Beam Technol. Nanofabr., Cheung, R., Ed. (2013), 1A-5.Google Scholar
Chang, M., Dridi, K., Nojeh, A., Pease, R.F.W., Tech. Dig. 29th Int. Vac. Nanoelectron. Conf., Nojeh, A., Dridi, K., Voon, K., Chowdhury, M., Eds. (2016), p. 144.Google Scholar
Chang, M., Vahdani Moghaddam, M., Nojeh, A., Proc. 27th Int. Vac. Nanoelectron. Conf., Tsujino, S., Gobrecht, J., Paraliev, M., Braun, H.-H., Groening, O., Feurer, T., Eds. (2014), p. 34.Google Scholar
Chang, M., Dahmardeh, M., Vahdani Moghaddam, M., Mirvakili, S.M., Madden, J.D.W., Takahata, K., Nojeh, A., Proc. 58th Int. Conf. Electron Ion Photon Beam Technol. Nanofabr., Berggren, K.K., Ed. (2014), P02–02.Google Scholar
Pop, E., Mann, D., Wang, Q., Goodson, K., Dai, H., Nano Lett. 6, 96 (2006).Google Scholar
Yaghoobi, P., “Laser-Induced Electron Emission from Arrays of Carbon Nanotubes,” PhD thesis, The University of British Columbia, Vancouver, Canada (2012).Google Scholar
Hsu, I.-K., Kumar, R., Bushmaker, A., Cronin, S.B., Pettes, M.T., Shi, L., Brintlinger, T., Fuhrer, M.S., Cumings, J., Appl. Phys. Lett. 92, 063119 (2008).Google Scholar
Hsu, I.-K., Pettes, M.T., Bushmaker, A., Aykol, M., Shi, L., Cronin, S.B., Nano Lett. 9, 590 (2009).CrossRefGoogle Scholar
Hsu, I.-K., Pettes, M.T., Aykol, M., Chang, C.-C., Hung, W.-H., Theiss, J., Shi, L., Cronin, S.B., J. Appl. Phys. 110, 044328 (2011).Google Scholar
Rossouw, D., Bugnet, M., Botton, G.A., Phys. Rev. B Condens. Matter 87, 125403 (2013).Google Scholar
Aliev, A.E., Lima, M.H., Silverman, E.M., Baughman, R.H., Nanotechnology 21, 035709 (2010).Google Scholar
Duzynska, A., Taube, A., Korona, K.P., Judek, J., Zdrojek, M., Appl. Phys. Lett. 106,183108 (2015).Google Scholar
Lim, Z.H., Lee, A., Lim, K.Y.Y., Zhu, Y., Sow, C.-H., J. Appl. Phys. 107, 064319 (2010).Google Scholar
Fan, Y., Singer, S.B., Bergstrom, R., Regan, B.C., Phys. Rev. Lett. 102, 187402 (2009).Google Scholar
Singer, S.B., Mecklenburg, M., White, E.R., Regan, B.C., Phys. Rev. B Condens. Matter 84, 195468 (2011).Google Scholar
Mecklenburg, M., Hubbard, W.A., White, E.R., Dhall, R., Cronin, S.B., Aloni, S., Regan, B.C., Science 347, 629 (2015).Google Scholar
Purcell, S.T., Vincent, P., Journet, C., Binh, V.T., Phys. Rev. Lett. 88, 105502 (2002).Google Scholar
Cox, D.C., Forrest, R.D., Smith, P.R., Silva, S.R.P., Appl. Phys. Lett. 85, 2065 (2004).Google Scholar
Liu, P., Wei, Y., Jiang, K., Sun, Q., Zhang, X., Fan, S., Zhang, S., Ning, C., Deng, J., Phys. Rev. B Condens. Matter 73, 235412 (2006).CrossRefGoogle Scholar
Wei, Y., Jiang, K., Feng, X., Liu, P., Liu, L., Fan, S., Phys. Rev. B Condens. Matter 76, 045423 (2007).Google Scholar
Wong, T.-H., Gupta, M.C., Hernandez-Garcia, C., Nanotechnology 18, 135705 (2007).Google Scholar
Kolekar, S.K., Patole, S.P., Alegaonkar, P.S., Yoo, J.B., Dharmadhikari, C.V., Appl. Surf. Sci. 257, 10306 (2011).Google Scholar
Liang, S.-J., Ang, L.K., Phys. Rev. Appl. 3, 014002 (2015).Google Scholar
Massicotte, M., Schmidt, P., Vialla, F., Watanabe, K., Taniguchi, T., Tielrooij, K.J., Koppens, F.H.L., Nat. Commun. 7, 12174 (2016).CrossRefGoogle Scholar
Tan, S., Argondizzo, A., Wang, C., Cui, X., Petek, H., Phys. Rev. X 7, 011004 (2017).Google Scholar
Schwede, J.W., Bargatin, I., Riley, D.C., Hardin, B.E., Rosenthal, S.J., Sun, Y., Schmitt, F., Pianetta, P., Howe, R.T., Shen, Z.-X., Melosh, N.A., Nat. Mater. 9, 762 (2010).Google Scholar
Girolami, M., Criante, L., Di Fonzo, F., Lo Turco, S., Mezzetti, A., Notargiacomo, A., Pea, M., Bellucci, A., Calvani, P., Valentini, V., Trucchi, D.M., Carbon 111, 48 (2017).Google Scholar
Vahdani Moghaddam, M., Yaghoobi, P., Sawatzky, G.A., Nojeh, A., ACS Nano 9, 4064 (2015).Google Scholar
Bechtel, J.H., Smith, W.L., Bloembergen, N., Phys. Rev. B Condens. Matter 15, 4557 (1977).CrossRefGoogle Scholar
Westover, T.L., Franklin, A.D., Cola, B.A., Fisher, T.S., Reifenberger, R.G., J. Vac. Sci. Technol. B 28, 423 (2010).Google Scholar
Yuan, J., Zhang, H., Tang, J., Shinya, N., Nakajima, K., Qin, L.-C., J. Am. Ceram. Soc. 95, 2352 (2012).CrossRefGoogle Scholar
Xu, J., Zhao, Y., Zou, C., Chem. Phys. Lett. 423, 138 (2006).Google Scholar
Xu, T.T., Zheng, J.-G., Nicholls, A.W., Stankovich, S., Piner, R.D., Ruoff, R.S., Nano Lett. 4, 2051 (2004).Google Scholar
Zou, C.Y., Zhao, Y.M., Xu, J.Q., J. Cryst. Growth 291, 112 (2006).Google Scholar
De, D.K., Olawole, O.C., Proc. 3rd Int. Conf. African Dev. Issues, Solomon, O., Ed. (2016), p. 58.Google Scholar
Olawole, O.C., De, D.K., Proc. SPIE 9927, Campo, E.M., Dobisz, E.A., Eldada, L.A., Eds. (2016), p. 992716.Google Scholar
Ma, Q., Andersen, T.I., Nair, N.L., Gabor, N.M., Massicotte, M., Lui, C.H., Young, A.F., Fang, W., Watanabe, K., Taniguchi, T., Kong, J., Gedik, N., Koppens, F.H.L., Jarillo-Herrero, P., Nat. Phys. 12, 455 (2016).Google Scholar
Pop, E., Mann, D., Cao, J., Wang, Q., Goodson, K., Dai, H., Phys. Rev. Lett. 95, 155505 (2005).Google Scholar