Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T05:29:27.007Z Has data issue: false hasContentIssue false

Bright and stable quantum dots and their applications in full-color displays

Published online by Cambridge University Press:  12 September 2013

Tae-Ho Kim
Affiliation:
Samsung Advanced Institute of Technology, Samsung Electronics;[email protected]
Shinae Jun
Affiliation:
Samsung Advanced Institute of Technology, Samsung Electronics;[email protected]
Kyung-Sang Cho
Affiliation:
Samsung Advanced Institute of Technology, Samsung Electronics;[email protected]
Byoung Lyong Choi
Affiliation:
Samsung Advanced Institute of Technology, Samsung Electronics;[email protected]
Eunjoo Jang
Affiliation:
Samsung Advanced Institute of Technology, Samsung Electronics;[email protected]
Get access

Abstract

Quantum dots (QDs) have inspired researchers to develop innovative optoelectronics applications, and especially the current advances in light-emitting diode (LED) displays have attained production level technology. The most challenging issues in developing practical QD displays are the design of highly efficient and stable nanostructures and control of the interfaces between the nanostructures and device components. This article highlights applications of both color-converting and current-driven QD-LEDs, with emphasis on the synthesis of materials specifically tailored for display applications and fabrication techniques that improve device performance, such as cross-linking and transfer-printing of nanocrystal thin films.

Type
Quantum dot light-emitting devices
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brus, J., Chem. Phys. 80, 4403 (1984).Google Scholar
Bruchez, M., Moronne, M., Gin, P., Weiss, S., Alivisatos, A.P., Science 281, 2013 (1998).CrossRefGoogle Scholar
Huynh, W.U., Dittmer, J.J., Alivisatos, A.P., Science 295, 2425 (2002).CrossRefGoogle Scholar
Hakimi, F., Bawendi, M.G., Tumminelli, R.H., Haavisto, J.R., US Patent 5260957 (2003).Google Scholar
Lee, J., Sundar, V.C., Heine, J.R., Bawendi, M.G., Jensen, K.F., Adv. Mater. 12, 1102 (2000).3.0.CO;2-J>CrossRefGoogle Scholar
Coe, S., Woo, W.-K., Bawendi, M.G., Bulović, V., Nature 420, 800 (2002).CrossRefGoogle Scholar
Murray, C.B., Norris, D.J., Bawendi, M.G., J. Am. Chem. Soc. 115, 8706 (1993).CrossRefGoogle Scholar
Hines, M.A., Guyot-Sionnest, P., J. Phys. Chem. 100, 468 (1996).CrossRefGoogle Scholar
Peng, X.G., Manna, L., Yang, W.D., Wickham, J., Scher, E., Kadavanich, A., Alivisatos, A.P., Nature 404, 59 (2000).CrossRefGoogle Scholar
Li, J.J., Wang, Y.A., Guo, W., Keay, J.C., Mishima, T.D., Johnson, M.B., Peng, X., J. Am. Chem. Soc. 125, 12567 (2003).CrossRefGoogle Scholar
Schlamp, M.C., Peng, X., Alivisatos, A.P., J. Appl. Phys. 82, 5837 (1997).CrossRefGoogle Scholar
Sun, Q., Wang, Y.A., Li, L.S., Wang, D., Zhu, T., Xu, J., Yang, C., Li, Y., Nat. Photonics 1, 717 (2007).CrossRefGoogle Scholar
Jun, S., Jang, E., ACS Nano 7, 1472 (2013).CrossRefGoogle Scholar
Cho, K.-S., Lee, E.K., Joo, W.-J., Jang, E., Kim, T.-H., Lee, S.J., Kwon, S.-J., Han, J.Y., Kim, B.-K., Choi, B.L., Kim, J.M., Nat. Photonics 3, 341 (2009).CrossRefGoogle Scholar
Kim, T.-H., Cho, K.-S., Lee, E.K., Lee, S.J., Chae, J., Kim, J.W., Kim, D.H., Kwon, J.-Y., Amaratunga, G., Lee, S.Y., Choi, B.L., Kuk, Y., Kim, J.M., Kim, K., Nat. Photonics 5, 176 (2011).CrossRefGoogle Scholar
Meitl, M.A., Zhu, Z.-T., Kumar, V., Lee, K.J., Feng, X., Huang, Y., Adesima, I., Nuzzo, R.G., Rogers, J.A., Nat. Mater. 5, 33 (2006).CrossRefGoogle Scholar
Kim, T.-H., Choi, W.M., Kim, D.-H., Meitl, M.A., Menard, E., Jiang, H., Carlisle, J.A., Rogers, J.A., Adv. Mater. 20, 2171 (2008).CrossRefGoogle Scholar
Kim, D.-H., Ahn, J.H., Choi, W.M., Kim, H.-S., Kim, T.-H., Song, J., Huang, Y., Zhuangjian, L., Chun, L., Rogers, J.A., Science 320, 507 (2008).CrossRefGoogle Scholar
Kim, T.-H., Carlson, A., Ahn, J.-H., Won, S.M., Wang, S., Huang, Y., Rogers, J.A., Appl. Phys. Lett. 94, 113502 (2009).CrossRefGoogle Scholar
Kim, S., Wu, J., Carlson, A., Jin, S.H., Kovalsky, A., Glass, P., Liu, Z., Ahmed, N., Elgan, S.L., Chen, W., Ferreira, P.M., Sitti, M., Huang, Y., Rogers, J.A., Proc. Natl. Acad. Sci. U.S.A. 107 (40), 17095 (2010).CrossRefGoogle Scholar
Bailey, R.E., Nie, S.M., J. Am. Chem. Soc. 125, 7100 (2003).CrossRefGoogle Scholar
Jang, E., Jun, S., Pu, L., Chem. Commun. 24, 2964 (2003).CrossRefGoogle Scholar
Zheng, Y.G., Yang, Z.C., Ying, J.Y., Adv. Mater. 19, 1475 (2007).CrossRefGoogle Scholar
Zhong, X.H., Zhang, Z.H., Liu, S.H., Han, M.Y., Knoll, W., J. Phys. Chem. B 108, 15552 (2004).CrossRefGoogle Scholar
Zhong, X.H., Feng, Y.Y., Knoll, W., Han, M.Y., J. Am. Chem. Soc. 125, 13559 (2003).CrossRefGoogle Scholar
Bae, W.K., Char, K., Hur, H., Lee, S., Chem. Mater. 20, 531 (2008).CrossRefGoogle Scholar
Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., Bawendi, M.G., J. Phys. Chem. B 101, 9463 (1997).CrossRefGoogle Scholar
Jun, S., Jang, E., Chem. Commun. 36, 4616 (2005).CrossRefGoogle Scholar
Wang, X., Ren, X., Kahen, K., Hahn, M., Rajeswaran, M., Maccagnano-Zacher, S., Silcox, J., Cragg, G., Efros, A., Krauss, T., Nature, 459, 686 (2009).CrossRefGoogle Scholar
Li, L., Reiss, P., J. Am. Chem. Soc. 130, 11588 (2008).CrossRefGoogle Scholar
Xu, S., Ziegler, J., Nann, T., J. Mater. Chem. 18, 2653 (2008).CrossRefGoogle Scholar
Kim, S., Fisher, B., Eisler, H.-J., Bawendi, M., J. Am. Chem. Soc. 125, 11466 (2003).CrossRefGoogle Scholar
Bang, J., Park, J., Lee, J.H., Won, N., Nam, J., Lim, J., Chang, B.Y., Lee, H.J., Chon, B., Shin, J., Park, J.B., Choi, J.H., Cho, K., Park, S.M., Joo, T., Kim, S., Chem. Mater. 22, 233 (2010).CrossRefGoogle Scholar
Mews, A., Eychmuller, A., Giersig, M., Schooss, D., Weller, H., J. Phys. Chem. 98, 934 (1994).CrossRefGoogle Scholar
Braus, M., Burda, C., El-Sayed, M.A., J. Phys. Chem. A 105, 5548 (2001).Google Scholar
Battaglia, D., Li, J.J., Wang, Y., Peng, X., Angew. Chem. Int. Ed. 42, 5035 (2003).CrossRefGoogle Scholar
Zhong, X., Xie, R., Basche, Y., Zhang, T., Knoll, W., Chem. Mater. 17, 4038 (2005).CrossRefGoogle Scholar
Jun, S., Jang, E., Lim, J., Nanotechnology 17, 3892 (2006).CrossRefGoogle Scholar
Jun, S., Jang, E., Angew. Chem. Int. Ed. 52, 679 (2013).CrossRefGoogle Scholar
Jang, E., Jun, S., Jang, H., Lim, J., Kim, B., Kim, Y., Adv. Mater. 22, 3076 (2010).CrossRefGoogle Scholar
Alejandro-Arellano, M., Ung, T., Blanco, A., Mulvaney, P., Liz-Marzán, L.M., Pure Appl. Chem. 72, 257 (2000).CrossRefGoogle Scholar
Selvan, S.T., Patra, P.K., Ang, C.Y., Ying, J.Y., Angew. Chem. Int. Ed. 46, 2448 (2007).CrossRefGoogle Scholar
Colvin, V.L., Schlamp, M.C., Alivisatos, A.P., Nature 370, 354 (1994).CrossRefGoogle Scholar
Qian, L., Zheng, Y., Xue, J., Holloway, P.H., Nat. Photonics 5, 543 (2011).CrossRefGoogle Scholar
Coe-Sullivan, S., Steckel, J.S., Woo, W.-K., Bawendi, M.G., Bulović, M.G.V., Adv. Funct. Mater. 15, 1117 (2005).CrossRefGoogle Scholar
Anikeeva, P.O., Madigan, C.F., Coe-Sullivan, S.A., Steckel, J.S., Bawendi, M.G., Bulović, V., Chem. Phys. Lett. 424, 120 (2006).CrossRefGoogle Scholar
Guyott-Sionnest, P., Wang, C., J. Chem. Phys. B 107, 7355 (2003).CrossRefGoogle Scholar
Yu, D., Wang, C., Guyott-Sionnest, P., Science 300, 1277 (2003).CrossRefGoogle Scholar
Zhu, T., Shanmugasundaram, K., Price, S.C., Ruzyllo, J., Zhang, F., Xu, J., Mohney, S.E., Zhang, Q., Wang, A.Y., Appl. Phys. Lett. 92, 023111 (2008).CrossRefGoogle Scholar
Price, S.C., Shanmugasundaram, K., Ramani, S., Zhu, T., Zhang, F., Xu, J., Mohney, S.E., Zhang, Q., Kshirsagar, A., Ruzyllo, J., Semicond. Sci. Technol. 24, 105024 (2009).CrossRefGoogle Scholar
Wood, V., Panzer, M.J., Chen, J., Bradley, M.S., Halpert, J.E., Bawendi, M.G., Bulovic, V., Adv. Mater. 21, 2151 (2009).CrossRefGoogle Scholar
Kim, L., Anikeeva, P.O., Coe-Sullivan, S.A., Steckel, J.S., Bawendi, M.G., Bulović, V., Nano Lett. 8, 4513 (2008).CrossRefGoogle Scholar
Rizzo, A., Mazzeo, M., Palumbo, M., Lerario, G., D’Amone, S., Cingolani, R., Gigli, G., Adv. Mater. 20, 1886 (2008).CrossRefGoogle Scholar
Kim, D.H., Lee, H.S., Yang, H., Yang, L., Cho, K., Adv. Funct. Mater. 18, 1363 (2008).CrossRefGoogle Scholar
Meredig, B., Salleo, A., Gee, R., ACS Nano 3, 2881 (2009).CrossRefGoogle Scholar
Lee, S., Yoon, D., Choi, D., Kim, T.-H., Nanotechnology 24, 025702 (2013).CrossRefGoogle Scholar
Hsia, K.J., Huang, Y., Menard, E., Park, J.-U., Zhou, W., Rogers, J.A., Fulton, J.M., Appl. Phys. Lett. 86, 154106 (2005).CrossRefGoogle Scholar
Feng, X., Meitl, M.A., Bowen, A.M., Huang, Y., Nuzzo, R.G., Rogers, J.A., Langmuir 23, 12555 (2007).CrossRefGoogle Scholar
Yan, X., Yao, J., Lu, G., Chen, X., Zhang, K., Yang, B., J. Am. Chem. Soc. 126, 10510 (2004).CrossRefGoogle Scholar
Yim, K.-H., Zheng, Z., Liang, Z., Friend, R.H., Huck, W.T.S., Kim, J.-S., Adv. Funct. Mater. 20, 2171 (2008).Google Scholar
Lee, S., Yoon, D., Choi, D., Kim, T.-H., Nanotechnology 24, 025702 (2013).CrossRefGoogle Scholar
Niu, Y.-H., Munro, A.M., Cheng, Y.-J., Tian, Y., Liu, M.S., Zhao, J., Bardecker, J.A., Plante, I.J., Ginger, D.S., Jen, A.K.-Y., Adv. Mater. 19, 3371 (2007).CrossRefGoogle Scholar