Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T09:06:24.729Z Has data issue: false hasContentIssue false

Biorenewable Multiphase Polymers

Published online by Cambridge University Press:  31 January 2011

Megan L. Robertson
Affiliation:
Department of Chemistry, University of Minnesota, Minneapolis, 55455-0431, USA; e-mail: [email protected].
Marc A. Hillmyer
Affiliation:
Department of Chemistry, University of Minnesota, Minneapolis, 55455-0431, USA; tel. 612-625-7834; and e-mail: [email protected].
Anne-Cécile Mortamet
Affiliation:
Anthony J. Ryan
Affiliation:
University of Sheffield, UK; tel. +44-114-222-9761; and e-mail: [email protected].
Get access

Abstract

Hybrid macromolecules composed of two or more covalently connected segments have the ability to self-assemble into nanostructured materials. These fascinating materials are used in applications ranging from footwear to bitumen modification to microelectronics. The number of technologies that utilize or could benefit from multiphase polymers is expanding at a rapid rate. This growth is due to the development of simple scalable synthetic technologies, a deeper understanding of their structure-property relationships, and their effectiveness as low-level additives. As industrial uses of self-assembled polymers become more prevalent, there will be a heightened focus on alternative preparative approaches that do not rely on petroleum feedstocks. Therefore the development of biorenewable multiphase polymers is an important research endeavor. In this article, we will explore the synthesis, self-assembly, and properties of renewable block and graft copolymers that contain aliphatic polyesters, as well as bio-sourced segmented polyurethanes. These two classes of multiphase polymers are the most promising and practical candidates for implementation in the next generation of sustainable materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Flieger, M., Kantorova, M., Prell, A., Rezanka, T., Votruba, J., Folia Microbiologica 48, 27 (2003).Google Scholar
2.Sudesh, K., Iwata, T., CLEAN—Soil, Air, Water 36, 433 (2008).CrossRefGoogle Scholar
3.Gandini, A., Macromolecules 41, 9491 (2008).CrossRefGoogle Scholar
4.Bhardwaj, R., Mohanty, A.K., J. Biobased Mater. Bioenergy 1, 191 (2007).CrossRefGoogle Scholar
5.Holden, G., Legge, N.R., Quirk, R.P., Schroeder, H.E., Thermoplastic Elastomers (Hanser/Gardner, Ohio, 1993).Google Scholar
6.Hobbs, S.Y., Polym. Eng. Sci. 26, 74 (1986).CrossRefGoogle Scholar
7.Hadjichristidis, N., Pispas, S., Floudas, G., Block Copolymers (Wiley, New Jersey, 2003).Google Scholar
8.Lodge, T.P., Macromol. Chem. Phys. 204, 265 (2003).CrossRefGoogle Scholar
9.O'Keefe, B.J., Hillmyer, M.A., Tolman, W.B., Dalton Trans. 2215 (2001).Google Scholar
10.DOE, U.S. Biomass program, “Top Value Added Chemicals from Biomass, Volume 1: Results of Screening for Potential Candidates from Sugars and Synthesis Gas,” (Report # 35523, 2004); http://www1.eere.energy.gov/biomass/pdfs/35523.pdf.Google Scholar
11.Meier, M.A.R., Metzger, J.O., Schubert, U.S., Chem. Soc. Rev. 36, 1788 (2007).CrossRefGoogle Scholar
12.Gallezot, P., Green Chem. 9, 295 (2007).Google Scholar
13.Ikada, Y., Jamshidi, K., Tsuji, H., Hyon, S.H., Macromolecules 20, 904 (1987).CrossRefGoogle Scholar
14.Li, L.B., Zhong, Z.Y., De Jeu, W.H., Dijkstra, P.J., Feijen, J., Macromolecules 37, 8641 (2004).Google Scholar
15.Albertsson, A.C., Varma, I.K., Biomacromolecules 4, 1466 (2003).Google Scholar
16.Dong, C.M., Qiu, K.Y., Gu, Z.W., Feng, X.D., J. Polym. Sci. Pol. Chem. 40, 409 (2002).Google Scholar
17.Kumar, R., Gao, W., Gross, R.A., Macromolecules 35, 6835 (2002).CrossRefGoogle Scholar
18.Slivniak, R., Domb, A.J., Macromolecules 38, 5545 (2005).CrossRefGoogle Scholar
19.Slivniak, R., Domb, A.J., Biomacromolecules 6, 1679 (2005).Google Scholar
20.Slivniak, R., Ezra, A., Domb, A.J., Pharm. Res. 23, 1306 (2006).CrossRefGoogle Scholar
21.Zhang, D., Hillmyer, M.A., Tolman, W.B., Biomacromolecules 6, 2091 (2005).Google Scholar
22.Wanamaker, C.L., O'Leary, L.E., Lynd, N.A., Hillmyer, M.A., Tolman, W.B., Biomacromolecules 8, 3634 (2007).Google Scholar
23.Wanamaker, C.L., Tolman, W.B., Hillmyer, M.A., Biomacromolecules 10, 443 (2009).CrossRefGoogle Scholar
24.Wanamaker, C.L., Bluemle, M.J., Pitet, L.M., O'Leary, L.E., Tolman, W.B., Hillmyer, M.A., Biomacromolecules 10, 2904 (2009).CrossRefGoogle Scholar
25.Frick, E.M., Hillmyer, M.A., Macromol. Rapid Commun. 21, 1317 (2000).3.0.CO;2-B>CrossRefGoogle Scholar
26.Frick, E.M., Zalusky, A.S., Hillmyer, M.A., Biomacromolecules 4, 216 (2003).CrossRefGoogle Scholar
27.Byrne, C.M., Allen, S.D., Lobkovsky, E.B., Coates, G.W., J. Am. Chem. Soc. 126 (37), 11404 (2004).CrossRefGoogle Scholar
28.Mosnacek, J., Matyjaszewski, K., Macromolecules 41, 5509 (2008).CrossRefGoogle Scholar
29.Madison, L.L., Huisman, G.W., Microbiol. Mol. Biol. Rev. 63, 21 (1999).Google Scholar
30.Kelley, A.S., Mantzaris, N.V., Daoutidis, P., Srienc, F., Nano Lett. 1, 481 (2001).Google Scholar
31.Pederson, E.N., McChalicher, C.W.J., Srienc, F., Biomacromolecules 7, 1904 (2006).Google Scholar
32.McChalicher, C.W.J., Srienc, F., J. Biotechnol. 132, 296 (2007).CrossRefGoogle Scholar
33.Schreck, K.M., Hillmyer, M.A., Journal of Biotechnology 132, 287 (2007).CrossRefGoogle Scholar
34.Haynes, D., Abayasinghe, N.K., Harrison, G.M., Burg, K.J., Smith, D.W., Biomacromolecules 8, 1131 (2007).CrossRefGoogle Scholar
35.Hiki, S., Miyamoto, M., Kimura, Y., Polymer 41, 7369 (2000).Google Scholar
36.Nguyen, S., Can. J. Chem. 86, 570 (2008).Google Scholar
37.Dumitriu, S., Polysaccharides: Structural Diversity and Functional Versatility (Marcel Dekker, New York, 2005).Google Scholar
38.Teramoto, Y., Nishio, Y., Polymer 44, 2701 (2003).CrossRefGoogle Scholar
39.Schwach, E., Six, J.L., Averous, L., J. Polym. Environ. 16, 286 (2008).Google Scholar
40.Ohya, Y., Maruhashi, S., Ouchi, T., Macromol. Chem. Phys. 199, 2017 (1998).Google Scholar
41.Yan, C.H., Zhang, J.M., Lv, Y.X., Yu, J., Wu, J., Zhang, J., He, J.S., Biomacromolecules 10, 2013 (2009).CrossRefGoogle Scholar
42.Dong, H.Q., Xu, Q., Li, Y.Y., Mo, S.B., Cai, S.J., Liu, L.J., Colloids Surf., B 66, 26 (2008).CrossRefGoogle Scholar
43.Nagahama, K., Mori, Y., Ohya, Y., Ouchi, T., Biomacromolecules 8, 2135 (2007).Google Scholar
44.Feng, H., Dong, C.M., Biomacromolecules 7, 3069 (2006).Google Scholar
45.Li, G., Zhuang, Y.L., Mu, Q., Wang, M.Z., Fang, Y.E., Carbohydr. Polym. 72, 60 (2008).Google Scholar
46.Ouchi, T., Kontani, T., Ohya, Y., Polymer 44, 3927 (2003).CrossRefGoogle Scholar
47.Liu, Y., Tian, F., Hu, K.A., Carbohydr. Res. 339, 845 (2004).Google Scholar
48.Yao, F.L., Chen, W., Wang, H., Liu, H., Yao, K.et al., Polymer 44, 6435 (2003).Google Scholar
49.Nouvel, C., Frochot, C., Sadtler, V., Dubois, P., Dellacherie, E., Six, J.L., Macromolecules 37, 4981 (2004).Google Scholar
50.Qu, X., Wirsen, A., Albertsson, A.C., J. Appl. Polym. Sci. 74, 3186 (1999).Google Scholar
51.De Jong, S.J., De Smedt, S.C., Wahls, M.W.C., Demeester, J., Kettenes-Van Den Bosch, J.J., Hennink, W.E., Macromolecules 33, 3680 (2000).CrossRefGoogle Scholar
52.Wu, Y., Li, M.J., Gao, H.X., J. Polym. Res. 16, 11 (2009).CrossRefGoogle Scholar
53.Van Tomme, S.R., Storm, G., Hennink, W.E., Int. J. Pharm. 355, 1 (2008).Google Scholar
54.Yilgor, I., Yilgor, E., Polym. Rev. 47, 487 (2007).CrossRefGoogle Scholar
55.Krol, P., Prog. Mater. Sci. 52, 915 (2007).Google Scholar
56.Petrović, Z.S., Polym. Rev. 48, 109 (2008).Google Scholar
57.Yeganeh, H., Hojati-Talemi, P., Polym. Degrad. Stab. 92, 480 (2007).CrossRefGoogle Scholar
58.Petrović, Z.S., Cevallos, M.J., Javni, I., Schaefer, D.W., Justice, R., J. Polym. Sci., Part B: Polym. Phys. 43, 3178 (2005).Google Scholar
59.Petrović, Z.S., Guo, A., Zhang, W., J. Polym. Sci., Part A: Polym. Chem. 38, 4062 (2000).Google Scholar
60.Petrović, Z.S., Zhang, W., Javni, I., Biomacromolecules 6, 713 (2005).Google Scholar
61.Petrović, Z.S., Zhang, W., Zlatanić, A., Lava, C.C., Ilavskyý, M., J. Polym. Environ. 10, 5 (2002).CrossRefGoogle Scholar
62.Hou, C.T., Brown, W., Labeda, D.P., Abbott, T.P., Weisleder, D., J. Ind. Microbiol. Biotechnol. 19, 34 (1997).CrossRefGoogle Scholar
63.Lligadas, G., Ronda, J.C., Galià, M., Biermann, U., Metzger, J.O., J. Polym. Sci., Part A: Polym. Chem 44, 634 (2006).CrossRefGoogle Scholar
64.Wang, C.S., Yang, L.T., Ni, B.L., Wang, L.Y., J. Appl. Polym. Sci. 112, 1122 (2009).CrossRefGoogle Scholar
65.Ionescu, M., Petrović, Z.S., “Ethyoxylated Soybean Polyols for Polyurethanes,” in International Degradable Plastics Symposium: Status of Biobased and Synthetic Polymer Technology (BioEnvironmental Polymer Society, Chicago, 2006).Google Scholar
66.Zlatanić, A., Lava, C., Zhang, W., Petrović, Z.S., J. Polym. Sci., Part B: Polym. Phys. 42, 809 (2004).CrossRefGoogle Scholar
67.Bakare, I.O., Pavithran, C., Okieimen, F.E., Pillai, C.K.S., J. Appl. Polym. Sci. 109, 3292 (2008).Google Scholar
68.Donnelly, M.J., Stanford, J.L., Still, R.H., Carbohydr. Polym. 14, 221 (1991).CrossRefGoogle Scholar
69.Donnelly, M.J., Polym. Int. 37, 297 (1995).Google Scholar
70.Stanford, J.L., Still, R.H., Cawse, J.L., Donnelly, M.J., Adhesives from Renewable Resources (American Chemical Society, Washington, DC, 1989).Google Scholar
71.Cawse, J.L., Stanford, J.L., Still, R.H., Makromol. Chem. 185, 709 (1984).CrossRefGoogle Scholar
72.Boufi, S., Gandini, A., Belgacem, M.N., Polymer 36, 1689 (1995).CrossRefGoogle Scholar
73.Rogers, M.E., Long, T.E., Synthetic Methods in Step-Growth Polymers (Wiley, New Jersey, 2003).Google Scholar
74.Pechar, T.W., Sohn, S., Wilkes, G.L., Ghosh, S., Frazier, C.E., Fornof, A., Long, T.E., J. Appl. Polym. Sci. 101, 1432 (2006).CrossRefGoogle Scholar
75.Xu, Y., Petrović, Z., Das, S., Wilkes, G.L., Polymer 49, 4248 (2008).CrossRefGoogle Scholar
76.Zhang, L., Jeon, H.K., Malsam, J., Herrington, R., Macosko, C.W., Polymer 48, 6656 (2007).CrossRefGoogle Scholar
77.Argyropoulos, J., Erdem, B., Bhattacharjee, D., Foley, P., Nanjundiah, K., JCT Coatings Tech 6, 44 (2009).Google Scholar
78.Xie, H.-Q., Guo, J.-S., Eur. Polym. J. 38, 2271 (2002).Google Scholar
79.Eisenbach, C.D., Ribbe, A., Macromol. Rapid Comm. 15, 395 (1994).CrossRefGoogle Scholar
80.Das, S., Dave, M., Wilkes, G.L., J. Appl. Polym. Sci. 112, 299 (2009).CrossRefGoogle Scholar
81.Van Bogart, J.W.C., Lilaomitkul, A., Cooper, S.L., Multiphase Polymers, Cooper, S.L., Estes, G.M., Eds. (American Chemical Society, Washington, DC, 1979).Google Scholar
82.Van Bogart, J.W.C., Gibson, P.E., Cooper, S.L., J. Polym. Sci., Polym. Phys. Ed. 21, 65 (1983).Google Scholar
83.Abhouzar, S., Wilkes, G.L., Ophir, Z., Polymer 23, 1077 (1982).Google Scholar
84.Gandini, A., Belgacem, M.N., Prog. Polym. Sci. 22, 1203 (1997).Google Scholar
85.Cawse, J.L., Stanford, J.L., Still, R.H., Makromol. Chem. 185, 697 (1984).Google Scholar