Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T21:42:59.123Z Has data issue: false hasContentIssue false

Biofunctionalized Nanoparticles and Their Uses

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Nanotechnology is revolutionizing the way that sensing, electronic, optical, and medical devices are designed because the properties of nanostructures are distinct from their bulk-material counterparts. The incorporation of nanomaterials into devices and sensors to exploit their unique properties has been a challenge because they must be functionalized in a manner that does not destroy their properties. Biological macromolecules can non-covalently or covalently bind to nanomaterials, resulting in the formation of biofunctionalized nanoparticles. These biofunctionalized nanoparticles are exemplified by the peptide-mediated suspension of carbon nanotubes in solution and the templating of bimetallic nanoparticles using multifunctional peptides.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Tomczak, M.M., Glawe, D.D., Drummy, L.F., Lawrence, C.G., Stone, M.O., Perry, C.C., Pochan, D.J., Deming, T.J., Naik, R.R., J. Am. Chem. Soc. 127, 12577 (2005).Google Scholar
2.Dieckmann, G.R., Dalton, A.B., Johnson, P.A., Razal, J., Chien, J., Giordano, G.M., Muñoz, E., Musselman, I.H., Baughman, R.H., Draper, R.K., J. Am. Chem. Soc. 125, 1770 (2003).Google Scholar
3.Kramer, R.M., Sowards, L.A., Pender, M.J., Stone, M.O., Naik, R.R., Langmuir 21, 8466 (2005).Google Scholar
4.Douglas, T., Strable, E., Willits, D., Aitouchen, A., Libera, M., Young, M., Adv. Mater. 14, 415 (2002).Google Scholar
5.Douglas, T., Young, M., Adv. Mater. 11, 679 (1999).Google Scholar
6.Douglas, T., Young, M., Nature 393, 152 (1998).Google Scholar
7.Cheung, C.L., Camarero, J.A., Woods, B.W., Lin, T., Johnson, J.E., DeYoreo, J.J., J. Am. Chem. Soc. 125, 6848 (2003).Google Scholar
8.Smith, J.C., Lee, K.-B., Wang, Q., Finn, M.G., Johnson, J.E., Mrksich, M., Mirkin, C.A., Nano Lett. 3, 883 (2003).CrossRefGoogle Scholar
9.Hall, S.R., Shenton, W., Engelhardt, H., Mann, S., Chem. Phys. Chem. 2, 184 (2001).Google Scholar
10.Györvary, E., Schroedter, A., Talapin, D.V., Weller, H., Pum, D., Sleyter, U.B., J. Nanosci. Nanotech. 4, 115 (2004).Google Scholar
11.Wong Po Foo, C., Patwardhan, S.V., Belton, D.J., Kitchel, B., Anastasiades, D., Huang, J., Naik, R.R., Perry, C.C., Kaplan, D.L., Proc. Nat. Acad. Sci. 103, 9428 (2006).Google Scholar
12.Wang, S., Humphreys, E.S., Chung, S.-Y., Delduco, D.F., Lustig, S.R., Wang, H., Parker, K.N., Rizzo, N.W., Subramoney, S., Chiang, Y.-M., Jagota, A., Nat. Mater. 2, 196 (2003).CrossRefGoogle Scholar
13.Pender, M.J., Sowards, L.A., Hartgerink, J.D., Stone, M.O., Naik, R.R., Nano Lett. 6, 40 (2006).Google Scholar
14.Turkevitch, J., Stevenson, P.C., Hillier, J., Discuss. Faraday Soc. 11, 55 (1951).Google Scholar
15.Watson, K.J., Zhu, J., Nguyen, S.B.T., Mirkin, C.A., J. Am. Chem. Soc. 121, 462 (1999).Google Scholar
16.Fan, H., Lu, Y., Stump, A., Reed, S.T., Baer, T., Schunk, R., Perez-Luna, V., López, G.P., Brinker, C.J., Nature 405, 56 (2000).Google Scholar
17.Doshi, D.A., Gibaud, A., Goletto, V., Lu, M., Gerung, H., Ocko, B., Hang, S.M., Brinker, C.J., J. Am. Chem. Soc. 125, 11646 (2003).Google Scholar
18.Slocik, J.M., Tam, F., Halas, N.J., Naik, R.R., Nano Lett. 7, 1054 (2007).Google Scholar
19.Naik, R.R., Brott, L.L., Clarson, S.J., Stone, M.O., J. Nanosci. Nanotechnol. 2, 95 (2002).Google Scholar
20.Lee, S.-W., Mao, C., Flynn, C.E., Belcher, A.M., Science 296, 892 (2002).CrossRefGoogle Scholar
21.Gaskin, D.J.H., Starck, K., Vulfson, E.N., Biotechnol. Lett. 22, 1211 (2000).CrossRefGoogle Scholar
22.Whaley, S.R., English, D.S., Hu, E.L., Barbara, P.F., Belcher, A.M., Nature 405, 665 (2000).Google Scholar
23.Naik, R.R., Stringer, S.J., Agarwal, G., Jones, S.E., Stone, M.O., Nat. Mater. 1, 169 (2002).Google Scholar
24.Naik, R.R., Jones, S.E., Murray, C.J., McAuliffe, J.C., Vaia, R.A., Stone, M.O., Adv. Funct. Mater. 14, 25 (2004).Google Scholar
25.Braun, R., Sarikaya, M., Schulten, K., J. Biomater. Sci., Polym. Ed. 13, 747 (2002).Google Scholar
26.Sarikaya, M., Tamerler, C., Jen, A.K.-Y., Schulten, K., Baneyx, F., Nat. Mater. 2, 577 (2003).Google Scholar
27.Tamerler, C., Sarikaya, M., Acta Biomater. 3, 289 (2007).Google Scholar
28.Oren, E.E., Tamerler, C., Sahin, D., Hnilova, M., Safak Seker, U.O., Sarikaya, M., Samudrala, R., Bioinformatics 23, 2816 (2007).Google Scholar
29.Witus, L.S., Rocha, J.-D.R., Yuwono, V.M., Paramonov, S.E., Weisman, R.B., Hartgerink, J.D., J. Mater. Chem. 17, 1909 (2007).Google Scholar
30.Slocik, J.M., Stone, M.O., Naik, R.R., Small 1, 1048 (2005).Google Scholar
31.Slocik, J.M., Naik, R.R., Adv. Mater. 18, 1988 (2006).Google Scholar
32.Ma, N., Dooley, C.J., Kelley, S.O., J. Am. Chem. Soc. 128, 12598 (2006).Google Scholar
33.Saito, R., Dresselhaus, G., Dresselhaus, M.S., Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).Google Scholar
34.Boul, P.J., Liu, J., Mickelson, E.T., Huffman, C.B., Ericson, L.M., Chiang, I.W., Smith, K.A., Colbert, D.T., Hauge, R.H., Margrave, J.L., Smalley, R.E., Chem. Phys. Lett. 310, 367 (1999).Google Scholar
35.Dalton, A.B., Ortiz-Acevedo, A., Zorbas, V., Brunner, E., Sampson, W.M., Collins, S., Razal, J.M., Yoshida, M.M., Baughman, R.H., Draper, R.K., Musselman, I.H., Jose-Yacaman, M., Dieckmann, G.R., Adv. Funct. Mater. 14, 1147 (2004).Google Scholar
36.Ortiz-Acevedo, A., Xie, H., Zorbas, V., Sampson, W.M., Dalton, A.B., Baughman, R.H., Draper, R.K., Musselman, I.H., Dieckmann, G.R., J. Am. Chem. Soc. 127, 9512 (2005).Google Scholar
37.Slocik, J.M., Zabinski, J.S. Jr, Phillips, D.M., Naik, R.R., Small (2007), Accepted.Google Scholar
38.Lee, J.-S., Han, M.S., Mirkin, C.A., Angew. Chem. Int. Ed. 46, 4093 (2007).Google Scholar
39.Slocik, J.M., Naik, R.R., Curr. Nanosci. 3, 117 (2007).Google Scholar
40.Slocik, J.M., Govorov, A.O., Naik, R.R., Supramol. Chem. 18, 415 (2006).Google Scholar
41.Mitchel, G.P., Mirkin, C.A., Letsinger, R.L., J. Am. Chem. Soc. 121, 8122 (1999).Google Scholar
42.Li, M., Mann, S., J. Mater. Chem. 14, 2260 (2004).Google Scholar
43.Rosi, N.L., Giljohann, D.A., Thaxton, C.S., Lytton-Jean, A.K., Han, M.S., Mirkin, C.A., Science 312, 1027 (2006).CrossRefGoogle Scholar