Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-09T09:26:08.363Z Has data issue: false hasContentIssue false

Bentonite as a Backfill Material in a High-Level Waste Repository

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The concept for the disposal of high-level radioactive waste (HLW) in Switzerland is illustrated in Figure 1: the waste, solidified in a borosilicate glass matrix, is encapsulated in a 25-cm-thick steel canister which has a minimum life expectancy of 1,000 years. After this time, the heat produced by 90Sr and 137Cs will have dissipated and the repository will have adjusted to the host rock ambient temperature of around 60°C.

The steel canisters will be placed in horizontal tunnels, 3.7 m in diameter, at a depth of around 1,000 m in the granite of northern Switzerland, and the tunnels then backfilled. The backfill material, an important link in the chain of engineered and natural safety barriers, satisfies both physical/mechanical and chemical requirements. The most important of these are:

• Low hydraulic conductivity compared to the host rock;

• Good swelling properties to seal construction-caused joints and rock fractures;

• Plasticity to absorb rock movements and to distribute pressure homogeneously;

• Good retention of radionuclides; and

• Stability over a period of at least 106 years.

Economic aspects and availability should also be considered: each canister requires 88 tons of backfill material, or of the order of 250,000 metric tons for the planned repository.

Type
Nuclear Waste Disposal
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kristallin I: Safety Assessment Report, Nagra Technical Report NTB 93-22E (Nagra, Wettlingen, 1994).Google Scholar
2.Grauer, R., Bentonite as a Backfill Material in the High-Level Waste Repository: Chemical Aspects, Nagra Technical Report NTB 86-12E (Nagra, Baden, 1986).Google Scholar
3.Grauer, R., The Chemical Behaviour of Mont-morillonite in a Repository Backfill: Selected Aspects, Nagra Technical Report NTB 88-24E (Nagra, Baden, 1988).Google Scholar
4.Grim, R.E. and Giiven, N., Bentonites. Geology, Mineralogy and Uses (Elsevier Science, New York, 1978).Google Scholar
5.Grim, R.E., Clay Mineralogy, 2nd ed. (McGraw-Hill, New York, 1968).Google Scholar
6.Hall, P.L. and Astill, D.M., Clays and Clay Minerals 37 (1989) p. 355.CrossRefGoogle Scholar
7.Slade, P.G. and Quirk, J.P.,J. Coll. Interface Sci. 144 (1991) p. 18.CrossRefGoogle Scholar
8.Sposito, G. and Prost, R., Chem. Rev. 82 (1982) p. 553.CrossRefGoogle Scholar
9.Kraehenbuehl, F., Stoeckli, H.F., Brunner, F., Kahr, G., and Müller-Vonmoos, M., Clay Minerals 22 (1987) p. 1.CrossRefGoogle Scholar
10.Bucher, F. and Spiegel, U., Quelldruck von hochverdichteten Bentoniten, Nagra Technical Report NTB 84-18 (Nagra, Baden, 1984).Google Scholar
11.Kahr, G., Kraehenbuehl, F., Stoeckli, H.F., and Müller-Vonmoos, M., Clay Minerals 24 (1990) p. 499.CrossRefGoogle Scholar
12.Shiao, S-Y., Rafferty, P., Meyer, R.E., and Rogers, W.J., in Radioactive Waste in Geologic Storage, edited by Fried, S. (Am. Chem. Soc. Symp. Ser. 100, Washington, DC, 1979) p. 297.CrossRefGoogle Scholar
13.Schindler, P.W. and Stumm, W., in Aquatic Surface Chemistry, edited by Stumm, W. (Wiley & Sons, New York, 1987) p. 83.Google Scholar
14.Davis, J.A. and Kent, D.B., in Mineral-Water Interface Geochemistry, edited by Hochella, M.F. and White, A.F. (Mineralogical Society of America, Washington, DC, 1990) p. 177.CrossRefGoogle Scholar
15.Li, Y-H., Geochim. Cosmochim. Acta 55 (1991) p. 3223.Google Scholar
16.Grauer, R., Zur Chemie von Kolloiden. Verfügbare Sorptionsmodelle und zur frage der Kolloidhaftung, PSI-Bericht Nr. 65 (Paul Scherrer Institute, Villigen, 1990).Google Scholar
17.Bradbury, M., Paul Scherrer Institute, unpublished results.Google Scholar
18.Pusch, R., Clay Minerals 27 (1992) p. 353.CrossRefGoogle Scholar
19.Torstenfeit, B., Radiochim. Acta 39 (1986) p. 105.CrossRefGoogle Scholar
20.Brandberg, F. and Skagius, K., Porosity, Sorption and Diffusivity Data Compiled for the SKB 91 Study (Swedish Nuclear Fuel and Waste Management Co., Stockholm, 1991).Google Scholar
21.Beall, G.W. and Allard, B., Nucl. Technol. 59 (1982) p. 405.CrossRefGoogle Scholar
22.Brookins, D.G., Geochemical Aspects of Radioactive Waste Disposal (Springer-Verlag, New York, 1984) p. 278.CrossRefGoogle Scholar
23.Eberl, D., Clays and Clay Minerals 26 (1978) p. 327.CrossRefGoogle Scholar
24.Eberl, D. and Hower, J., Geol. Soc. Am. Bull. 87 (1976) p. 1326.2.0.CO;2>CrossRefGoogle Scholar
25.Güven, N., Eng. Geol. 28 (1990) p. 233.CrossRefGoogle Scholar
26.Eberl, D., Geochim. Cosmochim. Acta 42 (1978) p. 1.CrossRefGoogle Scholar
27.Brusewitz, A.M., Clays and Clay Minerals 34 (1986) p. 442; 36 (1988) p. 349.CrossRefGoogle Scholar
28.Pusch, R. and Karnland, O., Geologic Evidence of Smectite Longevity. The Sardinian and Gotland Cases, SKB Technical Report 88-26 (Swedish Nuclear Fuel and Waste Management Co., Stockholm, 1988).Google Scholar
29.Velde, B., Clay Minerals (Elsevier Science, New York, 1985).Google Scholar
30.Hower, J., Eslinger, E.V., Hower, M.E., and Perry, E.A., Geol. Soc. Am. Bull. 87 (1976) p. 725.2.0.CO;2>CrossRefGoogle Scholar
31.Anjos, S.M. Couto, Clays and Clay Minerals 34 (1986) p. 424.CrossRefGoogle Scholar
32.Freed, R.L. and Peacor, D.R., Clay Minerals 24 (1989) p. 171.CrossRefGoogle Scholar