Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T13:07:02.119Z Has data issue: false hasContentIssue false

Autonomous materials from biomimicry

Published online by Cambridge University Press:  12 February 2019

Jennifer L. Ross*
Affiliation:
Department of Physics, University of Massachusetts Amherst, USA; [email protected]
Get access

Abstract

Biological entities are capable of amazing material feats, such as self-organization, self-repair, self-replication, and self-immolation. Indeed, the most intriguing feature of living biomaterials, whether they are tissues, cells, or intracellular structures, is their ability to autonomously sense, decide, and perform work without the need of a project manager. The effect is multiscale—from enzymes to full organisms, each level is capable of such autonomous activities. Further, each scale has similar energy-using units that work together to compose the larger-scale material. For instance, autonomous cells work together to create tissues. In this article, we will discuss some of the outstanding and desirable properties of active biological materials that we might consider mimicking in future materials. We will discuss how such active materials are powered and explore some fundamental lessons we can learn to direct future fundamental scientific inquiries to begin to understand and use these properties to make synthetic, autonomous materials of the future.

Type
Bioinspired Far-From-Equilibrium Materials
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Riskin, J., The Restless Clock: A History of the Centuries-Long Argument Over What Makes Living Things Tick (University of Chicago Press, Chicago, 2016).Google Scholar
Needleman, D., Dogic, Z., Nat. Rev. Mater. 2, 17048 (2017).CrossRefGoogle Scholar
Zocchi, G., MRS Bull. 44 (2), 124 (2019).Google Scholar
Gurtner, G.C., Werner, S., Barrandon, Y., Longaker, M.T., Nature 453, 314 (2008).CrossRefGoogle Scholar
Aumeier, C., Schaedel, L., Gaillard, J., John, K., Blanchoin, L., Théry, M., Nat. Cell Biol. 18, 1054 (2016).CrossRefGoogle Scholar
Schaedel, L., John, K., Gaillard, J., Nachury, M.V., Blanchoin, L., Théry, M., Nat. Mater. 14, 1156 (2015).CrossRefGoogle Scholar
Itzhak, D.N., Tyanova, S., Cox, J., Borner, G.H., elife 5 (2016), doi:10.7554/eLife.16950.CrossRefGoogle Scholar
Blaiszik, B.J., Kramer, S.L.B., Olugebefola, S.C., Moore, J.S., Sottos, N.R., White, S.R., Annu. Rev. Mater. Res. 40, 179 (2010).CrossRefGoogle Scholar
Mihashi, H., Nishiwaki, T., J. Adv. Concr. Technol. 10, 170 (2012).CrossRefGoogle Scholar
Denissen, W., Winne, J.M., Du Prez, F.E., Chem. Sci. 7, 30 (2016).CrossRefGoogle Scholar
Chaplin, D.D., J. Allergy Clin. Immunol. 125, S3 (2010).CrossRefGoogle Scholar
Muller, W.A., Vet. Pathol. 50, 7 (2013).CrossRefGoogle Scholar
Pringle, J., Muthukumar, A., Tan, A., Crankshaw, L., Conway, L., Ross, J.L., J. Phys. Condens. Matter 25, 374103 (2013).CrossRefGoogle Scholar
Stanhope, K.T., Yadav, V., Santangelo, C., Ross, J., Soft Matter (2017).Google Scholar
Lansky, Z., Braun, M., Lüdecke, A., Schlierf, M., ten Wolde, P.R., Janson, M.E., Diez, S., Cell 160, 1159 (2015).CrossRefGoogle Scholar
Moores, C.A., Pereriset, M., Francis, F., Chelly, J., Houdusse, A., Milligan, R.A., Mol. Cell. 14, 6 (2004).CrossRefGoogle Scholar
Zhang, J., Grzybowski, B.A., Granick, S., Langmuir 33, 6964 (2017).CrossRefGoogle Scholar
Walther, A., Müller, A.H.E., Chem. Rev. 113, 5194 (2013).CrossRefGoogle Scholar
Brown, A., Poon, W., Soft Matter 10, 4016 (2014).CrossRefGoogle Scholar
Das, S., Garg, A., Campbell, A.I., Howse, J., Sen, A., Velegol, D., Golestanian, R., Ebbens, S.J., Nat. Commun. 6 (2015).Google Scholar
Theurkauff, I., Cottin-Bizonne, C., Palacci, J., Ybert, C., Bocquet, L., Phys. Rev. Lett. 108 (2012).CrossRefGoogle Scholar
Ma, X., Hortelão, A.C., Patiño, T., Sánchez, S., ACS Nano 10, 9111 (2016).CrossRefGoogle Scholar
Patiño, T., Feiner-Gracia, N., Arqué, X., Miguel-López, A., Jannasch, A., Stumpp, T., Schäffer, E., Albertazzi, L., Sánchez, S., J. Am. Chem. Soc. 140, 7896 (2018).CrossRefGoogle Scholar
Quincke, G.H., IEEE Trans. Ind. Appl. 4, 845 (1984), doi:10.1109/TIA.1984.4504495.Google Scholar
Bricard, A., Caussin, J.-B., Desreumaux, N., Dauchot, O., Bartolo, D., Nature 503, 95 (2013).CrossRefGoogle Scholar
Ban, T., Kobayashi, Y., Suzuki, R., Nagatsu, Y., J. Phys. Soc. Jpn. 86, 101005 (2017).CrossRefGoogle Scholar
Thutupalli, S., Seemann, R., Herminghaus, S., New J. Phys. 13, 073021 (2011).CrossRefGoogle Scholar
Krüger, C., Klös, G., Bahr, C., Maass, C.C., Phys. Rev. Lett. 117 (2016).CrossRefGoogle Scholar
Lushi, E., Wioland, H., Goldstein, R.E., Proc. Natl. Acad. Sci. U.S.A. 111, 9733 (2014).CrossRefGoogle Scholar
Wu, Y., Jiang, Y., Kaiser, A.D., Alber, M., Phys. Biol. 8, 055003 (2011).CrossRefGoogle Scholar
Onsager, L., Ann. N.Y. Acad. Sci. 51, 627 (1949).CrossRefGoogle Scholar
Baskaran, A., Marchetti, M.C., Phys. Rev. Lett. 101 (2008).CrossRefGoogle Scholar
Farhadi, L., Fermino Do Rosario, C., Debold, E.P., Baskaran, A., Ross, J.L., Front. Phys. 6 (2018).CrossRefGoogle Scholar
Huber, L., Suzuki, R., Krüger, T., Frey, E., Bausch, A.R., Science 361, 255 (2018).CrossRefGoogle Scholar
Schaller, V., Weber, C., Semmrich, C., Frey, E., Bausch, A.R., Nature 467, 73 (2010).CrossRefGoogle Scholar
Liu, L., Tüzel, E., Ross, J.L., J. Phys. Condens. Matter. 23, 374104 (2011).CrossRefGoogle Scholar
Angelani, L., Di Leonardo, R., Ruocco, G., Phys. Rev. Lett. 102 (2009), doi:10.1103/PhysRevLett.104.168104.CrossRefGoogle Scholar
Di Leonardo, R., Angelani, L., Dell’Arciprete, D., Ruocco, G., Iebba, V., Schippa, S., Conte, M.P., Mecarini, F., De Angelis, F., Di Fabrizio, E., Proc. Natl. Acad. Sci. U.S.A. 107, 9541 (2010).CrossRefGoogle Scholar
Galajda, P., Keymer, J., Chaikin, P., Austin, R., J. Bacteriol. 189, 8704 (2007).CrossRefGoogle Scholar
Coombes, C.E., Yamamoto, A., Kenzie, M.R., Odde, D.J., Gardner, M.K., Curr. Biol. 23, 1342 (2013).CrossRefGoogle Scholar
Gardner, M.K., Zanic, M., Howard, J., Curr. Opin. Cell Biol. 25, 14 (2013).CrossRefGoogle Scholar
Schmoller, K.M., Fernández, P., Arevalo, R.C., Blair, D.L., Bausch, A.R., Nat. Commun. 1, 134 (2010).CrossRefGoogle Scholar
Li, I.T.S., Ha, T., Chemla, Y.R., Biophys. J. 106, 786a (2014).CrossRefGoogle Scholar