Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T13:37:35.795Z Has data issue: false hasContentIssue false

Atomistic Studies of Intrinsic Crack-Tip Plasticity

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

One of the most interesting unsolved problems in fracture mechanics is the precise understanding of the energy-dissipation mechanisms that occur as a crack advances. In most cases, this energy-release rate is many times the surface energy created. One of the main reasons for this difference is the fact that plastic deformation can occur in the crack-tip region as dislocations nucleate and are emitted from the crack tip. Experimental studies provide little insight into the precise mechanisms for this process because they cannot reach the atomistic scale. For example, a crack that may seem experimentally sharp, and therefore indicative of brittle fracture, may not be sharp at the atomic level. Continuum mechanics has a similar limitation, since the assumptions of elasticity theory usually break down in the crack-tip region. Atomistic simulation studies provide researchers an opportunity to obtain precise atomic configurations in the crack-tip region under various loading conditions and to observe the basic energy-dissipation mechanisms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Daw, M. and Baskes, M., Phys. Rev. B 29 (1984) p. 6443.CrossRefGoogle Scholar
2.Mishin, Y., Mehl, M., Farkas, D., and Papaconstantopoulos, D., Phys. Rev. B 59 (1999) p. 3393.CrossRefGoogle Scholar
3.Panova, J. and Farkas, D., Metall. Mater. Trans. A 29 (1998) p. 951.CrossRefGoogle Scholar
4.Cahn, R., MRS Bull. XVI (5) (1991) p. 18.CrossRefGoogle Scholar
5.Sih, G.C. and Liebowitz, H., in Fracture: An Advanced Treatise, Vol. II, edited by Liebowitz, H. (Academic Press, New York, 1968) p. 69.Google Scholar
6.Rice, J.R., J. Mech. Phys. Solids 40 (1992) p. 239.CrossRefGoogle Scholar
7.Zhou, S.J., Carlsson, A.E., and Thomson, R., Phys. Rev. Lett. 72 (1994) p. 852.CrossRefGoogle Scholar
8.Zhou, S.J., Carlsson, A.E., and Thomson, R., Phys. Rev. B 47 (1993) p. 7710.CrossRefGoogle Scholar
9.Hoagland, R., J. Mater. Res. 9 (1994) p. 1805.CrossRefGoogle Scholar
10.Hoagland, R., Daw, M., Foiles, S., and Baskes, M., J. Mater. Res. 5 (1990) p. 313.CrossRefGoogle Scholar
11.Zhou, S.J., Preston, D.L., Lomdahl, P.S., and Beazley, D.M., Science 279 (1998) p. 1525.CrossRefGoogle Scholar
12.Shastry, V. and Farkas, D., Intermetallics 6 (1998) p. 95.CrossRefGoogle Scholar
13.Iyer, V., Shastry, V., and Farkas, D., in Processing and Fabrication of Advanced Materials V, edited by Srivatsan, T.S. and Moore, J.J. (The Minerals, Metals and Materials Society, Warrendale, PA, 1996) p. 705.Google Scholar
14.Caillard, D., Vailhe, C., and Farkas, D., Philos. Mag. A 79 (1999) p. 723.CrossRefGoogle Scholar
15.Ludwig, M. and Gumbsch, P., Acta Metall. Mater. 46 (1998) p. 3135.CrossRefGoogle Scholar
16.Ludwig, M. and Gumbsch, P., in High-Temperature Ordered Intermetallic Alloys VI, Part 1, edited by Horton, J.A., Baker, I., Hanada, S., Noebe, R.D., and Schwartz, D.S. (Mater. Res. Soc. Symp. Proc. 364, Pittsburgh, 1995) p. 389.Google Scholar
17.Blankenship, C. Jr., Larsen, M., and Sutliff, J., Acta Metall. Mater. 43 (1995) p. 1549.CrossRefGoogle Scholar
18.Hack, J., Brzeski, J., and Darolia, R., Mater. Sci. Eng., A 192/193 (1995) p. 268.CrossRefGoogle Scholar
19.Hoehn, J., Venkataraman, S.K., and Gerberich, H.H.W., Mater. Sci. Eng., A 192 (1995) p. 301.CrossRefGoogle Scholar
20.Weaver, M.L., Levit, V., Kaufman, M.J., and Noebe, R.D., in High-Temperature Ordered Intermetallic Alloys VI, Part 1, edited by Horton, J.A., Baker, I., Hanada, S., Noebe, R.D., and Schwartz, D.S. (Mater. Res. Soc. Symp. Proc. 364, Pittsburgh, 1995) p. 425.Google Scholar
21.Jones, C. and Farkas, D., Mater. Sci. Eng., A 249 (1998) p. 249.Google Scholar
22.Ye, F., Farkas, D., and Soboyejo, W.O., Mater. Sci. Eng., A 264 (1999) p. 81.CrossRefGoogle Scholar
23.Petton, G. and Farkas, D., Scripta Metall. Mater. 25 (1991) p. 55.CrossRefGoogle Scholar
24.Mishin, Y. and Farkas, D., Philos. Mag. A 78 (1998) p. 29.CrossRefGoogle Scholar
25.Yan, M., Vitek, V., and Chen, S., Acta Mater. 44 (1996) p. 4351.CrossRefGoogle Scholar
26.Farkas, D., Philos. Mag. Lett. 80 (4) (2000) p. 229.CrossRefGoogle Scholar