Published online by Cambridge University Press: 29 November 2013
Realistic simulation of the atomic-scale properties of complex systems has long been a goal of scientists interested in the behavior of condensed matter. Until recently, the role of atomistic simulation techniques has been to address rather idealized problems in statistical mechanics. Treatment of more realistic materials has been uncommon not because suitable approaches toward simulating such materials were unknown, but rather because the computer power available was inadequate. Recently, major advances have occurred in the complexity of systems subject to atomistic simulation, primarily due to a dramatic increase in availability of computer power. These new capabilities have driven the development of atomic-scale descriptions of real materials accurate enough for atomistic simulation of a wide range of specific materials science problems.
In this section, we will outline several of the techniques used to simulate the microscopic behavior of an atomistic system. The first method introduced for atomistic simulation was the molecular dynamics technique, in which Newton's equations of motion for the individual atoms are integrated numerically for given interatomic and external forces. One of the first uses of this technique was the study, by Fermi, Pasta, and Ulam, of randomization of vibrational energy in a one-dimensional chain of atoms. Although the results of this initial application were to some extent unsatisfactory, the molecular dynamics technique has since been applied to a wide range of problems in the statistical mechanics of condensed media.