Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T07:48:50.228Z Has data issue: false hasContentIssue false

Atomic-Scale Processes in Cu Corrosion and Corrosion Inhibition

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The electrochemical dissolution of clean, oxide-free metal surfaces in electrolyte solutions is a fundamental process in metal corrosion as well as in technological etching and metal-refinement processes. Due to fundamental interest and for industrial reasons, dissolution processes and the effect of organic corrosion inhibitors have been studied intensely, concentrating on the determination of macroscopic etch rates and the effect of varying chemical parameters upon the etch kinetics. In the 1920s, ideas for the microscopic mechanism of the dissolution and the reverse deposition reaction had already been put forward by Stranski, who suggested that dissolution (growth) is dominated by detachment (attachment) of atoms at low coordination sites of the crystal surface and at kink sites along monoatomically high steps (see the schematic model in Figure 1). These kink sites are preserved during the removal (or addition) of the basic building blocks of the crystal (e.g., single metal atoms for elemental metals) and hence can sustain a continuous dissolution reaction. However, the direct verification of these ideas was impossible for more than seven decades, due to the very complex (defect) structure of the surfaces of typical metal electrodes, the presumably dominating effects of these defects on the etch process, and the lack of structurally sensitive probes suitable for in situ structural characterization.

Type
Corrosion Science
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Stranski, I.N., Z. Phys. Chem. 136 (1928) p. 259.CrossRefGoogle Scholar
2.Siegenthaler, H. and Christoph, R., in Scanning Tunneling Microscopy and Related Methods, NATO ASI Series E, vol. 184, edited by Behm, R.J., Garcia, N., and Rohrer, H. (Kluwer Academic Publishers, Dordrecht, 1990) p. 315.CrossRefGoogle Scholar
3.Vogt, M.R., Lachenwitzer, A., Magnussen, O.M., and Behm, R.J., Surf. Sci. 399 (1998) p. 49.CrossRefGoogle Scholar
4.Horányi, G., Rizmayer, E.M., and Joó, P., J. Electroanal. Chem. 152 (1983) p. 211.CrossRefGoogle Scholar
5.Brown, G.M. and Hope, G.A., J. Electroanal. Chem. 405 (1996) p. 211.CrossRefGoogle Scholar
6.Poensgen, M., Wolf, J.F., Frohn, J., Giesen, M., and Ibach, H., Surf. Sci. 274 (1992) p. 430.CrossRefGoogle Scholar
7.Suggs, D.W. and Bard, A.J., J. Phys. Chem. 99 (1995) p. 8349.CrossRefGoogle Scholar
8.Moffat, T.P., in In Situ Electron and Tunneling Microscopy of Dynamic Processes, edited by Sharma, R., Gai, P.L., Gajdardziska-Josifovska, M., Sinclair, R., and Whitman, L.J. (Mater. Res. Soc. Symp. Proc. 404, Pittsburgh, 1996) p. 3.Google Scholar
9.Vogt, M.R., Möller, F., Schilz, C.M., Magnussen, O.M., and Behm, R.J., Surf. Sci. 367 (1996) p. L33.CrossRefGoogle Scholar
10.Westphal, D. and Goldmann, A., Surf. Sci. 131 (1983) p. 113.CrossRefGoogle Scholar
11.Wilms, M., Broekmann, P., Stuhlmann, C., and Wandelt, K., Surf. Sci. 416 (1998) p. 121.CrossRefGoogle Scholar
12.Polewka, W., Vogt, M.R., Magnussen, O.M., and Behm, R.J. (unpublished).Google Scholar
13.Suggs, D.W. and Bard, A.J., J. Am. Chem. Soc. 116 (1994) p. 10725.CrossRefGoogle Scholar
14.Ando, S., Suzuki, T., and Itaya, K., J. Electroanal. Chem. 412 (1996) p. 139.CrossRefGoogle Scholar
15.Nakakura, C.Y., Zheng, G., and Altman, E.I., Surf. Sci. 401 (1998) p. 173.CrossRefGoogle Scholar
16.Sashikata, K., Matsui, Y., Itaya, K., and Soriaga, M.P., J. Phys. Chem. 100 (1996) p. 20027.CrossRefGoogle Scholar
17.Teshima, T., Ogaki, K., and Itaya, K., J. Phys. Chem. B 101 (1997) p. 2046.CrossRefGoogle Scholar
18.Vogt, M.R., Nichols, R.J., Magnussen, O.M., and Behm, R.J., J. Phys. Chem. B 102 (1998) p. 5859.CrossRefGoogle Scholar
19.Vogt, M.R., Polewska, W.,Magnussen, O.M., and Behm, R.J., J. Electrochem. Soc. 144 (1997) p. L113.CrossRefGoogle Scholar
20.Youda, R., Nishihara, H., and Aramaki, K., Corros. Sci. 28 (1988) p. 87.CrossRefGoogle Scholar
21.Youda, R., Nishihara, H., and Aramaki, K., Electrochim. Acta 35 (1990) p. 1011.CrossRefGoogle Scholar
22.Scherer, J., Vogt, M.R., Magnussen, O.M., and Behm, R.J., Langmuir 13 (1997) p. 7045.CrossRefGoogle Scholar
23.Sondag-Huethorst, J.A.M., Schönenberger, C., and Fokkink, L.G.J., J. Phys. Chem. 98 (27) (1994) p. 6826.CrossRefGoogle Scholar