Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T02:46:45.320Z Has data issue: false hasContentIssue false

Atomic-Level Studies of Processes on Metal Surfaces

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

An atomic-level understanding of surface phenomena is becoming increasingly important as materials scientists and engineers begin to fabricate new materials by controlling their growth at the nanometer or subnanometer scale. Recent advances in molecular beam epitaxy and chemical vapor deposition make it possible to assemble a crystalline solid or epitaxial overlayer literally one atomic layer at a time. The need to characterize the structure and composition of these complex materials in finer and finer detail has forced the traditional analytical tools (e.g., electron microscopy) to strive for better and better spatial resolution. It has also generated a virtual explosion in the proliferation of scanning probe microscopies inherently capable of viewing surface structure at the atomic level. This same need has recently rekindled an interest in the technique that first allowed scientists to view a solid surface in atomic detail: the field ion microscope (FIM). The unique attributes of this instrument and its successor, the atom probe mass spectrometer, make it possible to observe individual atoms on a solid surface, to remove atoms from the surface one atomic layer at a time, and to determine the chemical identity of the atoms as they are removed. The close match between these capabilities and the requirements of modern-day materials analysis have stimulated renewed efforts to use the FIM to gain fundamental insight into materials problems. This article discusses a few selected applications of the FIM, individually and combined with the atom probe, to phenomena occurring at the surface of solid materials.

Type
Technical Features
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Müller, E.W., Z. Phys. 131 (1951) p. 136.CrossRefGoogle Scholar
2.Müller, E.W., Panitz, J.A., and McLane, S.B., Rev. Sci. Instrum. 39 (1968) p. 83.CrossRefGoogle Scholar
3. See, for example: Mo, Y-W., Kleiner, J., Webb, M.G., and Lagally, M.G., Phys. Rev. Lett. 66 (1991) p. 1998; R.M. Feenstra, A.J. Slavin, G.A. Held, and M.A. Lutz, Phys. Rev. Lett. 66 (1991) p. 3257; E. Ganz, S.K. Theiss, I-G. Hwang, and J. Golovchenko, Phys. Rev. Lett. 68 (1992) p. 1567; Y-W. Mo, Phys. Rev. Lett. 71 (1993) p. 2923.CrossRefGoogle Scholar
4. For recent reviews of FIM surface diffusion studies see: Tsong, T.T., Atom-Probe Field Ion Microscopy (Cambridge Press, Cambridge, 1990) p. 202273; G. Ehrlich, Appl. Phys. A 55 (1992) p. 403.CrossRefGoogle Scholar
5.Ehrlich, G. and Hudda, F., J. Chem. Phys. 44 (1966) p. 1039.CrossRefGoogle Scholar
6.Bassett, D.W. and Webber, P.R., Surf. Sci. 70 (1978) p. 520.CrossRefGoogle Scholar
7.Wrigley, J.D. and Ehrlich, G., Phys. Rev. Lett. 44 (1980) p. 661.CrossRefGoogle Scholar
8.Feibelman, P.J., Phys. Rev. Lett. 65 (1990) p. 729.CrossRefGoogle Scholar
9.Kellogg, G.L. and Feibelman, P.J., Phys. Rev. Lett. 64 (1990) p. 3143.CrossRefGoogle Scholar
10. C-L. Chen and Tsong, T.T., Phys. Rev. Lett. 64 (1990) p. 3147.Google Scholar
11.Tsong, T.T., Phys. Rev. B 44 (1991) p. 13703.CrossRefGoogle Scholar
12.Tsong, T.T. and Chen, C-L., Nature 355 (1992) p. 328; G.L. Kellogg, Surf. Sci. 226 (1992) p. 18; G.L. Kellogg, Phys. Rev. Lett. 72 (1994) p. 1662.CrossRefGoogle Scholar
13.Kellogg, G.L. and Voter, A.F., Phys. Rev. Lett. 67 (1991) p. 622.CrossRefGoogle Scholar
14.Wang, S.C. and Ehrlich, G., Phys. Rev. Lett. 67, p. 2509.CrossRefGoogle Scholar
15.Kellogg, G.L., Wright, A.F., and Daw, M.S., J. Vac. Sci. Technol. A 9 (1991) p. 1757; G.L. Kellogg, Appl. Surf. Sci. 67 (1993) p. 134.CrossRefGoogle Scholar
16.Chen, C.L. and Tsong, T.T., Phys. Rev. B 47 (1993) p. 15852.CrossRefGoogle Scholar
17.Burton, W.K., Cabrera, N., and Frank, E.C., Philos. Trans. R. Soc. London, Ser. A 243A (1951) p. 299.Google Scholar
18.Wang, S.C. and Ehrlich, G., Phys. Rev. Lett. 62 (1989) p. 2297; S.C. Wang and G. Ehrlich, J. Chem. Phys. 94 (1991) p. 4071; S.C. Wang and G. Ehrlich, Phys. Rev. Lett. 68 (1992) p. 1160.CrossRefGoogle Scholar
19.Bassett, D.W., Thin Solid Films 48 (1978) p. 237; H-W. Fink and G. Ehrlich, Surf. Sci. 110 (1981) p. L611.CrossRefGoogle Scholar
20.Kolaczkiewicz, J. and Bauer, E., Phys. Rev. B 44 (1991) p. 5779.CrossRefGoogle Scholar
21.Schwoebel, P.R. and Kellogg, G.L., Phys. Rev. Lett. 61 (1988) p. 578; P.R. Schwoebel, S.M. Foiles, C.L. Bisson, and G.L. Kellogg, Phys. Rev. B 40 (1989) p. 10639.CrossRefGoogle Scholar
22.Chen, C-L. and Tsong, T.T., Phys. Rev. B 41 (1990) p. 12403.CrossRefGoogle Scholar
23.Gauthier, Y., Baudoing, R., Lundberg, M., and Rundgren, J., Phys. Rev. B 35 (1987) p. 7867.CrossRefGoogle Scholar
24.Ren, D.M., Qin, J.H., Wang, J.B., and Tsong, T.T., Phys. Rev. B 47 (1992) p. 3944 and references therein.CrossRefGoogle Scholar
25.Liu, W., Bao, C.L., Ren, D.M., and Tsong, T.T., Surf. Sci. 180 (1987) p. 153.CrossRefGoogle Scholar
26.Gorodetskii, V., Block, J.H., Drachsel, W., and Ehsasi, M., Appl. Surf. Sci. 67 (1993) p. 198; M.F.H. van Tol, A. Gielbert, and B.E. Nieuwenhuys, Appl. Surf. Sci. 67 (1993) p. 179.CrossRefGoogle Scholar
27.Kellogg, G.L., J. Catal. 92 (1985) p. 167.CrossRefGoogle Scholar
28.Oh, S.H. and Carpenter, J.E., J. Catal. 80 (1983) p. 472; C.H.F. Peden, D.W. Goodman, D.S. Blair, P.J. Berlowitz, G.B. Fisher, and S.H. Oh, J. Phys. Chem. 92 (1988) p. 1563.CrossRefGoogle Scholar
29.Kellogg, G.L., Appl. Phys. Lett. 51 (1987) p. 100.CrossRefGoogle Scholar
30.Ng, Y.S., McLane, S.B., and Tsong, T.T., J. Appl. Phys. 49 (1978) p. 2517; G.K.L. Cranstoun, D.R. Pyke, and G.DW. Smith, Appl. Surf. Sci. 2 (1979) p. 375; K. Hono, T. Sakurai, and H. W. Pickering J. Phys. (Paris) 48 (1987) p. 505.CrossRefGoogle Scholar