Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T08:20:54.990Z Has data issue: false hasContentIssue false

Approaches toward lithium metal stabilization

Published online by Cambridge University Press:  10 October 2018

Nancy J. Dudney*
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, USA; [email protected]
Get access

Abstract

Historically, batteries with lithium metal anodes have been a hazard, as the lithium becomes rough and eventually finely divided during cycling. The promise of higher energy density, however, continues to drive the search for novel approaches to manage this light and reactive material. Significant improvement has been achieved by designing new liquid-electrolyte compositions and interface barriers to stabilize the lithium in traditional batteries, but it is clear that solid-state batteries ensure a higher level of safety and perhaps higher energy density and lifetimes. The materials challenge then is to fabricate a cost-effective solid electrolyte that effectively maintains lithium as a dense uniform metal layer. This article describes the ideal cycling behavior of lithium and progress toward this goal of a solid electrolyte using glassy, ceramic, polymer, and composite electrolytes, as well as the challenges that continue to arise toward long-term, high-rate, and efficient cycling of lithium metal.

Type
Frontiers of Solid-State Batteries
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brandt, K., Solid State Ionics 69, 173 (1994).CrossRefGoogle Scholar
Choi, J.W., Aurbach, D., Nat. Rev. Mater. 1, 16013 (2016).CrossRefGoogle Scholar
Qian, J., Henderson, W.A., Xu, W., Bhattacharya, P., Engelhard, M., Borodin, O., Zhang, J.G., Nat Commun . 6 , 6362 (2015).CrossRefGoogle Scholar
Suo, L., Hu, Y.-S., Li, H., Armand, M., Chen, L., Nat. Commun. 4 , 1481 (2013).CrossRefGoogle Scholar
Li, X., Zheng, J., Ren, X., Engelhard, M.H., Zhao, W., Li, Q., Zhang, J.-G., Xu, W., Adv. Energy Mater. 8, 1703022 (2018).CrossRefGoogle Scholar
Lu, Y., Tu, Z., Archer, L.A., Nat. Mater . 13 (10), 961 (2014).CrossRefGoogle Scholar
Zheng, G., Lee, S.W., Liang, Z., Lee, H.-W., Yan, K., Yao, H., Wang, H., Li, W., Chu, S., Cui, Y., Nat. Nanotechnol. 9, 618 (2014).CrossRefGoogle Scholar
Kazyak, E., Wood, K.N., Dasgupta, N.P., Chem Mater . 27, 6457 (2015).CrossRefGoogle Scholar
Munaoka, T., Yan, X., Lopez, J., To, J.W.F., Park, J., Tok, J.B.-H., Cui, Y., Bao, Z., Adv. Energy Mater. 8, 1703138 (2018).CrossRefGoogle Scholar
Peng, O., Liang, S., Shyamsunder, A., Nazar, L.F., Joule 1 (4), 871 (2017).CrossRefGoogle Scholar
Li, W., Yao, H., Yan, K., Zheng, G.L., Liang, Z., Chiang, Y.-M., Cui, Y., Nat. Commun. 6, 7436 (2015).CrossRefGoogle Scholar
Reisch, M.S., Chem. Eng. News 95 (46), 19 (2017).Google Scholar
Robinson, A.L., MRS Bull . 39, 1046 (2014).CrossRefGoogle Scholar
Monroe, A., Newman, J., J. Electrochem. Soc. 152, A396 (2005).CrossRefGoogle Scholar
Stone, G.M., Mullin, S.A., Teran, A.A., Hallinan, D.T. Jr., Minor, A.M., Hexemer, A., Balsara, N.P., J. Electrochem. Soc. 159, A222 (2012).CrossRefGoogle Scholar
Porz, L., Swamy, R., Sheldon, B.W., Rettenwander, D., Fromling, R., Thaman, H.L., Berendts, S., Uecker, R., Carter, W.C., Chiang, Y.-M., Adv. Eng. Mater. 7, 1701003 (2017).CrossRefGoogle Scholar
Herbert, E., Hackney, S.A., Dudney, N.J., Phani, P.S., J. Mater. Res. 33 (10), 1335 (2018).CrossRefGoogle Scholar
Herbert, E., Hackney, S.A., Thole, V., Dudney, N.J., Phani, P.S., J. Mater. Res. 33 (10), 1347 (2018).CrossRefGoogle Scholar
Herbert, E., Hackney, S.A., Thole, V., Dudney, N.J., Phani, P.S., J. Mater. Res. 33 (10), 1361 (2018).CrossRefGoogle Scholar
Xu, C., Ahmad, Z., Aryanfar, A., Viswanathan, V., Greer, J.R., Proc. Natl. Acad. Sci. U.S.A. 114, 57 (2017).CrossRefGoogle Scholar
Kozen, C., Pearse, A.J., Lin, C.-F., Noked, M., Rubloff, G.W., Chem. Mater. 27, 5324 (2015).CrossRefGoogle Scholar
Neudecker, J., Dudney, N.J., Bates, J.B., J. Electrochem. Soc. 147, 517 (2000).CrossRefGoogle Scholar
Dudney, N.J., Mater. Sci. Eng. B 116, 245 (2005).CrossRefGoogle Scholar
Singh, M., Odusanya, O., Wilmes, G.M., Eitouni, H.B., Gomez, E.D., Patel, A.J., Chen, V.L., Park, M.J., Fragouli, P., Iatrou, H., Hadjichristidis, N., Cookson, D., Balsara, M.P., Macromolecules 40, 4578 (2007).CrossRefGoogle Scholar
Harry, K.J., Liao, X., Parkinson, D.Y., Minor, A.M., Balsara, N.P., J. Electrochem. Soc. 162 (14), A2699 (2015).CrossRefGoogle Scholar
Mashtalir, O., Nguyen, M., Bodoin, E., Swonger, L., O’Brien, S.P., ACS Omega 3, 181 (2018).CrossRefGoogle Scholar
Ceder, G., Ong, S.P., Wang, Y., MRS Bull . 43 (10), 746 (2018).CrossRefGoogle Scholar
Hao, F., Han, F., Liang, Y., Wang, C., Yao, Y., MRS Bull . 43 (10), 775 (2018).CrossRefGoogle Scholar
Sharafi, A., Kazyak, E., Davis, A.L., Yu, S., Thompson, T., Siegel, D.J., Dasgupta, N.P., Sakamoto, J., Chem. Mater. 29 (18), 7961 (2017).CrossRefGoogle Scholar
Wang, M., Sakamoto, J., J. Power Sources 377, 7 (2018).CrossRefGoogle Scholar
Han, X., Gong, Y., Fu, K., He, X., Hitz, G.R., Dai, J., Pearse, A., Liu, B., Wang, H., Rubloff, G., Mo, Y., Thangadurai, V., Wachsman, E.D., Hu, L., Nat. Mater. 16, 572 (2017).CrossRefGoogle Scholar
Kato, A., Hayashi, A., Tatsumisago, M., J. Power Sources 309, 27 (2016).CrossRefGoogle Scholar
Liu, B., Zhang, L., Xu, S., McOwen, D.W., Gong, Y., Yang, C., Pastel, G.R., Xie, H., Fu, K., Dai, J., Chen, C., Wachsman, E.D., Hu, L., Energy Storage Mater . 14, 376 (2018).CrossRefGoogle Scholar
Thomas-Alyea, K.E., J. Electrochem. Soc. 165 (7), A1523 (2018).CrossRefGoogle Scholar
Han, F., Westover, A.S., Yue, J., Fan, X., Wang, F., Chi, M., Leonard, D.N., Dudney, N.J., Wang, H., Wang, C.S., Nat. Energy (forthcoming).Google Scholar
Ferrese, A., Albertus, P., Christensen, J., Newman, J., J. Electrochem. Soc. 159, A1615 (2012).CrossRefGoogle Scholar
Dudney, N.J., J. Electroceram. 38, 222 (2017).CrossRefGoogle Scholar
Yang, X.-G., Zhang, G., Ge, S., Wang, C.-Y., Proc. Natl. Acad. Sci. U.S.A. 115, 7266 (2018).CrossRefGoogle Scholar
Deshpande, R.D., Li, J., Cheng, Y.-T., Verbrugge, M.W., J. Electrochem. Soc. 158 (8), A845 (2011).CrossRefGoogle Scholar
Albertus, P., Babinec, S., Litzelman, S., Newman, A., Nat. Energy 3, 16 (2018).CrossRefGoogle Scholar