Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T05:13:57.009Z Has data issue: false hasContentIssue false

Anisotropic wetting on structured surfaces

Published online by Cambridge University Press:  15 May 2013

Matthew J. Hancock
Affiliation:
Broad Institute, Cambridge, MA; [email protected]
Melik C. Demirel
Affiliation:
The Pennsylvania State University; [email protected]
Get access

Abstract

Directional textured surfaces help butterflies to shed water from their wings, pitcher plants to capture prey, and water striders and certain beetles and spiders to walk on water. Inspired by natural directional surfaces, researchers have developed a myriad of synthetic surfaces with precisely tuned physicochemical properties to regulate wettable adhesion. Anisotropic surfaces are of great value to the energy and biomedical fields for applications such as directional syringes, microprocessor cooling, high-efficiency hydropower turbines, and nanoscale digital fluidics. We summarize experimental and theoretical approaches to the design, synthesis, and characterization of engineered surfaces demonstrating anisotropic wetting properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bush, J.W.M., Hu, D.L., Annu. Rev. Fluid Mech. 38, 339 (2006).CrossRefGoogle Scholar
Bush, J.W.M., Hu, D.L., Prakash, M., Adv. Insect Physiol. 34, 117 (2007).CrossRefGoogle Scholar
Hsu, S.-H., Woan, K., Sigmund, W., Mater. Sci. Eng., R 72, 189 (2011).CrossRefGoogle Scholar
Hancock, M.J., Sekeroglu, K., Demirel, M.C., Adv. Funct. Mater. 22, 2223 (2012).CrossRefGoogle Scholar
Kwak, M.K., Jeong, H.-E., Kim, T.-I., Yoon, H., Suh, K.Y., Soft Matter 6, 1849 (2010).CrossRefGoogle Scholar
Yoshimitsu, Z., Nakajima, A., Watanabe, T., Hashimoto, K., Langmuir 18, 5818 (2002).CrossRefGoogle Scholar
Tian, X., Li, J., Wang, X., Soft Matter 8, 2633 (2012).CrossRefGoogle Scholar
Luo, M., Gupta, R., Frechette, J., ACS Appl. Mater. Interfaces 4, 890 (2012).CrossRefGoogle Scholar
John, K., Hänggi, P., Thiele, U., Soft Matter 4, 1183 (2008).CrossRefGoogle Scholar
Tokarev, I., Motornov, M., Minko, S., J. Mater. Chem. 19, 6932 (2009).CrossRefGoogle Scholar
Yarin, A.L., Zussman, E., Wendorff, J.H., Greiner, A., J. Mater. Chem. 17, 2585 (2007).CrossRefGoogle Scholar
Sun, Z., Zussman, E., Yarin, A.L., Wendorff, J.H., Greiner, A., Adv. Mater. 15, 1929 (2003).CrossRefGoogle Scholar
Dror, Y., Salalha, W., Avrahami, R., Zussman, E., Yarin, A.L., Dersch, R., Greiner, A., Wendorff, J.H., Small 3, 1064 (2007).CrossRefGoogle Scholar
Dong, H., Jones, W.E. Jr., Langmuir 22, 11384 (2006).CrossRefGoogle Scholar
Lee, K.J., Oh, J.H., Kim, Y., Jang, J., Chem. Mater. 18, 5002 (2006).CrossRefGoogle Scholar
Byun, J., Kim, N.-H., Lee, D.H., Lee, K.-H., Kim, J.K., Soft Matter 5, 3835 (2009).CrossRefGoogle Scholar
Jang, J., Lim, B., Lee, J., Hyeon, T., Chem. Commun. 83 (2001).CrossRefGoogle Scholar
Ozaydin-Ince, G., Demirel, G., Gleason, K.K., Demirel, M.C., Soft Matter 6, 1635 (2010).CrossRefGoogle Scholar
Ozaydin-Ince, G., Gleason, K.K., Demirel, M.C., Soft Matter 7, 638 (2011).CrossRefGoogle Scholar
Shields, A.R., Fiser, B.L., Evans, B.A., Falvo, M.R., Washburn, S., Superfine, R., Proc. Natl. Acad. Sci. U.S.A. 107, 15670 (2010).CrossRefGoogle Scholar
Xia, D., Johnson, L.M., López, G.P., Adv. Mater. 24 (10), 1287 (2012).CrossRefGoogle Scholar
Zheng, Y., Bai, H., Huang, Z., Tian, X., Nie, F.Q., Zhao, Y., Zhai, J., Jiang, L., Nature 463, 640 (2010).CrossRefGoogle Scholar
Gao, X., Jiang, L., Nature 432, 36 (2004).CrossRefGoogle Scholar
Prakash, M., Bush, J.W.M., Int. J. Non-Linear Mech. 46, 607 (2011).CrossRefGoogle Scholar
Parker, A.R., Lawrence, C.R., Nature 414, 33 (2001).CrossRefGoogle Scholar
Zheng, Y.M., Gao, X.F., Jiang, L., Soft Matter 3, 178 (2007).CrossRefGoogle Scholar
Byun, D., Hong, J., Saputra, , Ko, J.H., Lee, Y.J., Park, H.C., Byun, B.K., Lukes, J.R., J. Bionic Eng. 6, 63 (2009).CrossRefGoogle Scholar
Feng, X.-Q., Gao, X., Wu, Z., Jiang, L., Zheng, Q.-S., Langmuir 23, 4892 (2007).CrossRefGoogle Scholar
Gao, J., Liu, Y., Xu, H., Wang, Z., Zhang, X., Langmuir 26, 9673 (2010).CrossRefGoogle Scholar
Wu, D., Wang, J.N., Wu, S.Z., Chen, Q.D., Zhao, S., Zhang, H., Sun, H.B., Jiang, L., Adv. Funct. Mater. 21, 2927 (2011).CrossRefGoogle Scholar
Bohn, H.F., Federle, W., Proc. Natl. Acad. Sci. U.S.A. 101, 14138 (2004).CrossRefGoogle Scholar
Rothstein, J.P., Annu. Rev. Fluid Mech. 42, 89 (2010).CrossRefGoogle Scholar
Lauga, E., Brenner, M.P., Stone, H.A., in Handbook of Experimental Fluid Dynamics, Tropea, C., Yarin, A., Foss, J.F., Eds. (Springer, New York, 2007), p. 1219.Google Scholar
Bocquet, L., Barrat, J.-L., Soft Matter 3, 685 (2007).CrossRefGoogle Scholar
McHale, G., Newton, M.I., Shirtcliffe, N.J., Soft Matter 6, 714 (2010).CrossRefGoogle Scholar
Vellingiri, R., Savva, N., Kalliadasis, S., Phys. Rev. E 84, 036305 (2011).CrossRefGoogle Scholar
de Gennes, P.G., Rev. Mod. Phys. 57, 827 (1985).CrossRefGoogle Scholar
de Gennes, P.-G., Brochard-Wyart, F., Quéré, D., Capillarity and wetting phenomena: drops, bubbles, pearls, waves (Springer, New York, 2004).CrossRefGoogle Scholar
Kwon, Y., Choi, S., Anantharaju, N., Lee, J., Panchagnula, M.V., Patankar, N.A., Langmuir 26, 17528 (2010).CrossRefGoogle Scholar
Dorrer, C., Rühe, J., Langmuir 23, 3179 (2007).CrossRefGoogle Scholar
Hyväluoma, J., Koponen, A., Raiskinmäki, P., Timonen, J., Eur. Phys. J. E 23, 289 (2007).CrossRefGoogle Scholar
Mognetti, B.M., Kusumaatmaja, H., Yeomans, J.M., Faraday Discuss. 146, 153 (2010).CrossRefGoogle Scholar
Quéré, D., Annu. Rev. Mater. Res. 38, 16.1 (2008).CrossRefGoogle Scholar
Zhang, X., Cai, Y., Mi, Y., Langmuir 27, 9630 (2011).CrossRefGoogle Scholar
Zhou, J., Belyaev, A.V., Schmid, F., Vinogradova, O.I., J. Chem. Phys. 136, 194706 (2012).CrossRefGoogle Scholar
Ybert, C., Barentin, C., Cottin-Bizonne, C., Joseph, P., Bocquet, L., Phys. Fluids 19, 123601 (2007).CrossRefGoogle Scholar
Davis, A.M.J., Lauga, E., Phys. Fluids 21, 113101 (2009).CrossRefGoogle Scholar
Davis, A.M.J., Lauga, E., J. Fluid Mech. 661, 402 (2010).CrossRefGoogle Scholar
Zhao, Y., Lu, Q., Li, M., Li, X., Langmuir 23, 6212 (2007).CrossRefGoogle Scholar
Lagubeau, G., Le Merrer, M., Clanet, C., Quéré, D., Nat. Phys. 7, 395 (2011).CrossRefGoogle Scholar
Malvadkar, N.A., Hancock, M.J., Sekeroglu, K., Dressick, W.J., Demirel, M.C., Nat. Mater. 9, 1023 (2010).CrossRefGoogle Scholar
Sekeroglu, K., Gurkan, U.A., Demirci, U., Demirel, M.C., Appl. Phys. Lett. 99, 063703 (2011).CrossRefGoogle Scholar
Duncombe, T.A., Erdem, E.Y., Shastry, A., Baskaran, R., Böhringer, K.F., Adv. Mater. 24, 1545 (2012).CrossRefGoogle Scholar
Rabinovich, Y.I., Esayanur, M.S., Moudgil, B.M., Langmuir 21, 10992 (2005).CrossRefGoogle Scholar
Kim, H.-Y., Mahadevan, L., J. Fluid Mech. 548, 141 (2006).CrossRefGoogle Scholar
Bico, J., Roman, B., Moulin, L., Boudaoud, A., Nature 432, 690 (2004).CrossRefGoogle Scholar
Duprat, C., Protière, S., Beebe, A.Y., Stone, H., Nature 482, 510 (2012).CrossRefGoogle Scholar
Chu, K.-H., Xiao, R., Wang, E.N., Nat. Mater. 9, 413 (2010).CrossRefGoogle Scholar
Obara, N., Okumura, K., Phys. Rev. E 86, 020601 (2012).CrossRefGoogle Scholar
Kusumaatmaja, H., Yeomans, J.M., Langmuir 23, 6019 (2007).CrossRefGoogle Scholar
Kusumaatmaja, H., Yeomans, J.M., in Simulating Complex Systems by Cellular Automata, Hoekstra, A.G., Kroc, J., Sloot, P.M.A., Eds. (Springer-Verlag, Berlin, 2010), p. 241.CrossRefGoogle Scholar
Blow, M.L., Kusumaatmaja, H., Yeomans, J.M., J. Phys. Condens. Matter 21, 464125 (2009).CrossRefGoogle Scholar
Lu, H., Nie, X., Wu, F., Zhou, X., Kou, J., Xu, Y., Liu, Y., J. Chem. Phys. 136, 174511 (2012).CrossRefGoogle Scholar
Kou, J., Mei, M., Lu, H., Wu, F., Fan, J., Phys. Rev. E 85, 056301 (2012).CrossRefGoogle Scholar
Johnson, R.E. Jr., Dettre, R.H., in Advances in Chemistry, Vol. 43: Contact Angle, Wettability, and Adhesion, Fowkes, F.M., Ed. (American Chemical Society, Washington, DC, 1964), p. 112.CrossRefGoogle Scholar
Dettre, R.H., Johnson, R.E. Jr., in Advances in Chemistry, Vol. 43: Contact Angle, Wettability, and Adhesion, Fowkes, F.M., Ed. (American Chemical Society, Washington, DC, 1964), p. 136.CrossRefGoogle Scholar
Dettre, R.H., Johnson, R.E. Jr., J. Phys. Chem. 69, 1507 (1965).CrossRefGoogle Scholar
Dussan V, E.B., Chow, R.T.P., J. Fluid Mech. 137, 1 (1983).CrossRefGoogle Scholar
Extrand, C.W., Kumagai, Y., J. Colloid Interface Sci. 170, 515 (1995).CrossRefGoogle Scholar
Brakke, K.A., Exp. Math. 1, 141 (1992).CrossRefGoogle Scholar
Berthier, J., Brakke, K., The Physics of Microdroplets (Wiley-Scrivener, Hoboken, NJ, 2012).CrossRefGoogle Scholar
Prabhala, B.R., Panchagnula, M.V., Vedantam, S., Colloid Polym. Sci. 291, 279 (2013).CrossRefGoogle Scholar
Vedantam, S., Panchagnula, M.V., Phys. Rev. Lett. 99, 176102 (2007).CrossRefGoogle Scholar
Vedantam, S., Panchagnula, M.V., J. Colloid Interface Sci. 321, 393 (2008).CrossRefGoogle Scholar
Anantharaju, N., Panchagnula, M.V., Vedantam, S., Langmuir 25, 7410 (2009).CrossRefGoogle Scholar
Blow, M.L., Yeomans, J.M., Int. J. Mod. Phys. C 23, 1240013 (2012).CrossRefGoogle Scholar
Hu, X., Cebe, P., Weiss, A.S., Omenetto, F., Kaplan, D.L., Materials Today 15, 208 (2012).CrossRefGoogle Scholar
Sanchez, T., Welch, D., Nicastro, D., Dogic, Z., Science 333, 456 (2011).CrossRefGoogle Scholar
Vilfan, M., Potočnik, A., Kavčič, B., Osterman, N., Poberaj, I., Vilfan, A., Babič, D., Proc. Natl. Acad. Sci. U.S.A. 107, 1844 (2010).CrossRefGoogle Scholar
Yoon, H., Jeong, H.E., Kim, T., Kang, T.J., Tahk, D., Char, K., Suh, K.Y., Nano Today 4, 385 (2009).CrossRefGoogle Scholar
Yan, Y., Gao, N., Barthlott, W., Adv. Colloid Interface Sci. 169, 80 (2011).CrossRefGoogle Scholar