Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T13:09:35.726Z Has data issue: false hasContentIssue false

Analysis of Integrated Circuits and Semiconductor Materials Using IBIC Microscopy

Published online by Cambridge University Press:  17 June 2015

Get access

Extract

Injection, transport, and recombination of charge in semiconductors are important phenomena for governing the operation of microelectronic devices, the function of radiation detectors, and for fundamental studies of the properties of advanced materials. A new technique for the study of these important phenomena is ion-beam induced charge (IBIC) microscopy, which uses a focused, scanned beam of MeV ions. The information provided by this technique is used to study single-event effects in operating integrated circuits (ICs), charge-collection efficiency in radiation detectors that contain defects or other nonuniformities, and radiation damage in semiconductor materials. Detailed information can also be provided for physics-based simulation codes.

As with the related and more widely known technique of electron-beam induced current (EBIC) microscopy, an energetic ion slowing in a sample creates charge in the form of electron-hole pairs. These may drift from their origin under the influence of an internal electric field or diffuse through field-free regions of the sample. In the case of IBIC microscopy, however, a single MeV ion creates a dense path of electron-hole pairs, displaces sample atoms, and may induce sample-atom spallation or fission. In addition to these atomic effects, the other major differences between IBIC and EBIC are that an MeV ion will typically reach depths an order of magnitude deeper in the sample than the electrons used in EBIC and will also undergo relatively minimal sideways scattering. Thus deeply buried structures can be probed with relatively little loss of spatial resolution. The collection of the charge primarily depends on the electric-field distribution from, for example, p-n junctions in an irradiated device and the material properties in the immediate vicinity of the induced charge. The ability to scan a focused MeV ion beam over the area of an integrated circuit, for example, enables the mapping of the combined effect of material properties and field distribution through the measurement of charge-collection efficiencies.

Type
Focused MeV Ion Beams for Materials Analysis and Microfabrication
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Breese, M.B.H., Jamieson, D.N., and King, P.J.C., Materials Analysis with a Nuclear Microprobe (John Wiley & Sons, New York, 1996).Google Scholar
2.Manfredotti, C., Fizzotti, F., Polesello, P., Vittone, E., Rossi, P., Egeni, G., Rudello, V., Bogdanovic, I., Jaksic, M., and Valkovic, V., Nucl. lustrum. Methods B 130 (1997) p. 491.CrossRefGoogle Scholar
3.Sexton, F.W., IEEE Trans. Nucl. Sci. 43 (1996) p. 687.CrossRefGoogle Scholar
4.Takai, M., Nucl. Iustrum. Methods B 130 (1997) p. 466.CrossRefGoogle Scholar
5.Jamieson, D.N., Nucl. Instrum. Methods B 130 (1997) p. 706.CrossRefGoogle Scholar
6.Breese, M.B.H., Mater. Sci. Eng., B 42 (1996) p. 67.CrossRefGoogle Scholar
7.Breese, M.B.H., J. Appl. Phys. 74 (6) (1993) p. 3789.CrossRefGoogle Scholar
8.Lee, K.K. and Jamieson, D.N., Nucl. Instrum. Methods B 158 (1999) p. 445.CrossRefGoogle Scholar
9.Bradley, P.D., Rosenfeld, A.B., Lee, K.K., Jamieson, D.N., Heiser, G., and Satoh, S., IEEE Trans. Nucl. Sci. 45 (6) (1998) p. 2700.CrossRefGoogle Scholar
10.Sexton, F.W., Horn, K.M., Doyle, B.L., Shaneyfelt, M.R., and Meissenheimer, T.L., IEEE Trans. Nucl. Sci. 42 (6) (1995) p. 1940.CrossRefGoogle Scholar
11.Horn, K.M., Dodd, P.E., and Doyle, B.L., Mater. Sci. Forum 248-249 (1997) p. 427.CrossRefGoogle Scholar
12.Kazmerski, L.L., Surf. Sci. Rep. 19 (1993) p. 169.CrossRefGoogle Scholar
13.Donolato, C., Nipoti, R., Govani, D., Egeni, G.P., Rudello, V., and Rossi, P., Mater. Sci. Eng., B 42 (1996) p. 306.CrossRefGoogle Scholar
14.Donolato, C. and Nipoti, R., J. Appl. Phys. 82 (1997) p. 742.CrossRefGoogle Scholar
15.Manfredotti, C., Fizzotti, F., LoGiudice, A., Polesello, P., Vittone, E., Lu, R., and Jaksic, M., Diamond Relat. Mater. 8 (1999) p. 1597.CrossRefGoogle Scholar
16.Manfredotti, C., Apostolo, G., Cinque, G., Fizzotti, F., LoGiudice, A., Polesello, P., Truccato, M., Vittone, E., Egeni, G., Rudello, V., and Rossi, P., Diamond Relat. Mater. 7 (1998) p. 742.CrossRefGoogle Scholar
17.Manfredotti, C., Fizzotti, F., LoGiudice, A., Polesello, P., Vittone, E., Truccato, M., and Rossi, P., Diamond Relat. Mater. 8 (1999) p. 1592.CrossRefGoogle Scholar
18.Sexton, F.W., Horn, K.M., Doyle, B.L., Laird, J.S., Cholewa, M., Saint, A., and Legge, G.J.F., IEEE Trans. Nucl. Sci. 40 (1993) p. 1787.CrossRefGoogle Scholar
19.Horn, K.M., Doyle, B.L., Sexton, F.W., Laird, J.S., Saint, A., Cholewa, M., and Legge, G.J.F., Nucl. Instrum. Methods B 77 (1993) p. 355.CrossRefGoogle Scholar
20.Horn, K.M., Dodd, P.E., Breese, M.B.H., and Doyle, B.L., Nucl. lustrum. Methods B 130 (1997) p. 470.CrossRefGoogle Scholar
21.Dodd, P.E., Sexton, F.W., and Winokur, P.S., IEEE Trans. Nucl. Sci. 41 (1994) p. 2005.CrossRefGoogle Scholar
22.Dodd, P.E., IEEE Trans. Nucl. Sci. 43 (1996) p. 561.CrossRefGoogle Scholar
23.Osipowicz, T., Sanchez, J.L., Orlic, I., Watt, F., Kolachina, S., Ong, V.K.S., Chan, D.S.H., and Phang, J.C.H., Nucl. Instrum. Methods Phys. Res., Sect. B 130 (1997) p. 503.CrossRefGoogle Scholar
24.Knudson, A.R. and Campbell, A.B., IEEE Trans. Nucl. Sci. 38 (6) (1991) p. 1540.CrossRefGoogle Scholar
25.Dussault, H., Howard, J.W. Jr., Block, R.C., Pinto, M.R., Stapor, W.J., and Knudson, A.R., IEEE Trans. Nucl. Sci. 41 (6) (1994) p. 2018.CrossRefGoogle Scholar
26.Wagner, R.S., Bradley, J.M., Bordes, N., Maggiore, C.J., Sinha, D.N., and Hammond, R.B., IEEE Trans. Nucl. Sci. 34 (6) (1987) p. 1240.CrossRefGoogle Scholar
27.Nashiyama, I., Hirao, T., Kamiya, T., Yutoh, H., Nishijima, T., and Sekiguchi, H., IEEE Trans. Nucl. Sci. 40 (6) (1993) p. 1935.CrossRefGoogle Scholar
28.Schöne, H., Walsh, D.S., Sexton, F.W., Doyle, B.L., Dodd, P.E., Aurand, J.F., and Wing, N., IEEE Trans. Nucl. Sci. 45 (6) (1998) p. 2544.CrossRefGoogle Scholar
29.Hirao, T., Nashiyama, I., Kamiya, T., Suda, T., Sakai, T., and Hamano, T., Nucl. Instrum. Methods B 130 (1997) p. 486.CrossRefGoogle Scholar
30.Hirao, T., Nashiyama, I., Kamiya, T., and Nishijima, T., Nucl. Instrum. Methods B 104 (1995) p. 508.CrossRefGoogle Scholar
31.Breese, M.B.H., J. Appl. Phys. 74 (6) (1993) p. 3789.CrossRefGoogle Scholar
32.Schöne, H., Walsh, D.S., Sexton, F.W., Doyle, B.L., Dodd, P.E., Aurand, J.F., and Wing, N., Nucl. Instrum. Methods Phys. Res. B 158 (1999) p. 424.CrossRefGoogle Scholar
33.Breese, M.B.H. and Horn, K.M., Nucl. Instrum. Methods B 138 (1998) p. 1349.CrossRefGoogle Scholar
34.Breese, M.B.H., Sow, C.H., Jamieson, D.N., and Watt, F., Nucl. Instrum. Methods B 85 (1994) p. 790.CrossRefGoogle Scholar