Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T18:54:53.007Z Has data issue: false hasContentIssue false

Analysis of citation networks as a new tool for scientific research

Published online by Cambridge University Press:  06 December 2016

R.K. Vasudevan
Affiliation:
Center for Nanophase Materials Sciences and Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, USA; [email protected]
M. Ziatdinov
Affiliation:
Center for Nanophase Materials Sciences and Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, USA; [email protected]
C. Chen
Affiliation:
Department of Information Science, College of Computing Informatics, Drexel University, USA; [email protected]
S.V. Kalinin
Affiliation:
Center for Nanophase Materials Sciences and Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, USA; [email protected]
Get access

Abstract

The rapid growth of scientific publications necessitates new methods to understand the direction of scientific research within fields of study, ascertain the importance of particular groups, authors, or institutions, compute metrics that can determine the importance (centrality) of particular seminal papers, and provide insight into the social (collaboration) networks that are present. We present one such method based on analysis of citation networks, using the freely available CiteSpace Program. We use citation network analysis on three examples, including a single material that has been widely explored in the last decade (BiFeO3), two small subfields with a minimal number of authors (flexoelectricity and Kitaev physics), and a much wider field with thousands of publications pertaining to a single technique (scanning tunneling microscopy). Interpretation of the analysis and key insights into the fields, such as whether the fields are experiencing resurgence or stagnation, are discussed, and author or collaboration networks that are prominent are determined. Such methods represent a paradigm shift in our way of dealing with the large volume of scientific publications and could change the way literature searches and reviews are conducted, as well as how the impact of specific work is assessed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Oldenburg, H., Philos. Trans. 1, 2 (1665).Google Scholar
Oldenburg, H., Philos. Trans. 1, 1 (1665).Google Scholar
Jinha, A.E., Learned Publ. 23, 258 (2010).Google Scholar
Licklider, J.C.R., Clapp, V.W., Libraries of the Future (MIT Press, Cambridge, MA, 1965).Google Scholar
Salamon, M.B., Jaime, M., Rev. Mod. Phys. 73, 583 (2001).Google Scholar
Jiang, Y., Wang, S., Zhang, Y., Yan, J., Li, W., Solid State Ionics 110, 111 (1998).Google Scholar
Kharton, V.V., Yaremchenko, A.A., Naumovich, E.N., J. Solid State Electrochem. 3, 303 (1999).CrossRefGoogle Scholar
Endo, A., Ihara, M., Komiyama, H., Yamada, K., Solid State Ionics 86, 1191 (1996).CrossRefGoogle Scholar
Uehara, M., Mori, S., Chen, C., Cheong, S.-W., Nature 399, 560 (1999).Google Scholar
Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R., Ramesh, R., Chen, L., Science 264, 413 (1994).CrossRefGoogle Scholar
Bornmann, L., Mutz, R., J. Assoc. Inf. Sci. Technol. 66, 2215 (2015).Google Scholar
Chen, C., J. Am. Soc. Inf. Sci. Technol. 57, 359 (2006).CrossRefGoogle Scholar
van Eck, N., Waltman, L., Scientometrics 84, 523 (2009).Google Scholar
Sci2 Team, Science of Science (Sci2) Tool, https://sci2.cns.iu.edu.Google Scholar
Wang, J., Neaton, J., Zheng, H., Nagarajan, V., Ogale, S., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D., Waghmare, U., Science 299, 1719 (2003).CrossRefGoogle Scholar
Kubel, F., Schmid, H., Acta Crystallogr. B 46, 698 (1990).CrossRefGoogle Scholar
Kumar, M.M., Palkar, V., Srinivas, K., Suryanarayana, S., Appl. Phys. Lett. 76, 2764 (2000).CrossRefGoogle Scholar
Ramesh, R., Spaldin, N.A., Nat. Mater. 6, 21 (2007).CrossRefGoogle Scholar
Chen, C., Hu, Z., Liu, S., Tseng, H., Expert Opin. Biol. Ther. 12, 593 (2012).CrossRefGoogle Scholar
Tagantsev, A., Phys. Rev. B Condens. Matter 34, 5883 (1986).Google Scholar
Biancoli, A., Fancher, C.M., Jones, J.L., Damjanovic, D., Nat. Mater. 14, 224 (2015).CrossRefGoogle Scholar
Patel, J., Meyer, R.B., Phys. Rev. Lett. 58, 1538 (1987).CrossRefGoogle Scholar
Beresnev, L., Blinov, L., Davidyan, S., Konov, S., Yablonskii, S., JETP Lett. 45, 755 (1987).Google Scholar
Zubko, P., Catalan, G., Tagantsev, A.K., Annu. Rev. Mater. Res. 43, 387 (2013).Google Scholar
Sarma, S.D., Freedman, M., Nayak, C., NPJ Quantum Inf. 1, 15001 (2015).Google Scholar
Banerjee, A., Bridges, C.A., Yan, J.Q., Aczel, A.A., Li, L., Stone, M.B., Granroth, G.E., Lumsden, M.D., Yiu, Y., Knolle, J., Bhattacharjee, S., Kovrizhin, D.L., Moessner, R., Tennant, D.A., Mandrus, D.G., Nagler, S.E., Nat. Mater., published online April 4, 2016, http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4604.html.Google Scholar
Binnig, G., Rohrer, H., Helv. Phys. Acta 55 (6), 726 (1982).Google Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Science 306, 666 (2004).Google Scholar
Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K., Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).Google Scholar
Chen, C., J. Am. Soc. Inf. Sci. Technol. 63, 431 (2012).CrossRefGoogle Scholar