Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-20T09:18:27.890Z Has data issue: false hasContentIssue false

Amorphous Silicon, Microcrystalline Silicon, and Thin-Film Polycrystalline Silicon Solar Cells

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Thin-film solar cell technologies based on Si with a thickness of less than a few micrometers combine the low-cost potential of thin-film technologies with the advantages of Si as an abundantly available element in the earth's crust and a readily manufacturable material for photovoltaics (PVs). In recent years, several technologies have been developed that promise to take the performance of thin-film silicon PVs well beyond that of the currently established amorphous Si PV technology. Thin-film silicon, like no other thin-film material, is very effective in tandem and triple-junction solar cells. The research and development on thin crystalline silicon on foreign substrates can be divided into two different routes: a low-temperature route compatible with standard float glass or even plastic substrates, and a high-temperature route (>600°C). This article reviews the material properties and technological challenges of the different thin-film silicon PV materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Carlson, D.E. and Wronski, C.R., Appl. Phys. Lett. 28 (1976) p. 671.CrossRefGoogle Scholar
2.Houben, L., Luysberg, M., Hapke, P., Carius, R., and Finger, F., Philos. Mag. A 77 (6) (1998) p. 1447.CrossRefGoogle Scholar
3.Basore, P.A., Prog. Phot. Res. Appl. 2 (1994) p. 177.CrossRefGoogle Scholar
4. For a more comprehensive overview, see Beaucarne, G. and Slaoui, A., in Thin-Film Solar Cells, edited by Poortmans, J. and Arkhipov, V. (John Wiley & Sons, New York, 2006).Google Scholar
5.Meier, J., Flückiger, R., Keppner, H., and Shah, A., Appl. Phys. Lett. 65 (7) (1994) p. 860.Google Scholar
6.Guha, S., Narasimhan, K.L., and Pietruszko, S.M., J. Appl. Phys. 52 (1981) p. 859.CrossRefGoogle Scholar
7.Koval, R.J., Koh, J., Lu, Z., Jiao, L., Collins, R.W., and Wronski, C.R., Appl. Phys. Lett. 75 (1999) p. 1553.Google Scholar
8.Tsu, D.V., Chao, B.S., Ovshinsky, S.R., Guha, S., and Yang, J., Appl. Phys. Lett. 71 (1997) p. 1317.CrossRefGoogle Scholar
9.Curtins, H., Wyrsch, N., and Shah, A.V., Electron. Lett. 23 (5) (1987) p. 228.CrossRefGoogle Scholar
10.Keppner, H., Kroll, U., and Shah, A., Proc. 25th IEEE Photovoltaics Specialist Conference (1996) p. 669.Google Scholar
11.Vetterl, O., Finger, F., Carius, R., Hapke, P., Houben, L., Kluth, O., Lambertz, A., Mück, A., Rech, B., and Wagner, H., Sol. Energy Mater. Sol. Cells 62 (2000) p. 97.CrossRefGoogle Scholar
12.Kondo, M. and Matsuda, A., Curr. Opin. Solid State Mater. Sci. 6 (2002) p. 445.CrossRefGoogle Scholar
13.Rech, B., Roschek, T., Müller, J., Wieder, S., and Wagner, H., Sol. Energy Mater. Sol. Cells 66 (2001) p. 267.CrossRefGoogle Scholar
14.Fukawa, M., Suzuki, S., Guo, L., Kondo, M., and Matsuda, A., Sol. Energy Mater. Sol. Cells 66 (2001) p. 217.Google Scholar
15.Mai, Y., Klein, S., Carius, R., Wolff, J., Lambertz, A., Finger, F., and Geng, X., J. Appl. Phys. 97 (11) (2005) p. 1.CrossRefGoogle Scholar
16.Gordijn, A., Rath, J.K., and Schropp, R.E.I., Prog. Photovoltaics 14 (2006) p. 305.Google Scholar
17.Saito, K., Sano, M., Ogawa, K., and Kajita, I., J. Non-Cryst. Solids 164–166 (1993) p. 689.CrossRefGoogle Scholar
18.Smets, A.H.M., Kessels, W.M.M., and van de Sanden, M.C.M., Appl. Phys. Lett. 82 (6) (2003) p. 865.CrossRefGoogle Scholar
19.Schropp, R.E.I., van Veen, M.K., van der Werf, C.H.M., Williamson, D.L., and Mahan, A.H., Mat. Res. Soc. Symp. Proc. 808 (2004) A8.4.1.CrossRefGoogle Scholar
20.Schropp, R.E.I., Thin Solid Films 451–452 (2004) p. 455.Google Scholar
21.Matsumura, H., Jpn. J. Appl. Phys. 25 (12) (1986) p. L949.CrossRefGoogle Scholar
22.Klein, S., Finger, F., Carius, R., and Stutzmann, M., J. Appl. Phys. 98 024905 (2005).Google Scholar
23.Terry, M.L., Straub, A., Inns, D., Song, D., and Aberle, A.G., Appl. Phys. Lett. 86 172108 (2005).Google Scholar
24.Baba, T., Shima, M., Matsuyama, T., Tsuge, S., Wakisaka, K., and Tsuda, S., Proc. 13th European Photovoltaic Solar Energy Conf. (1995) p. 1708.Google Scholar
25.Basore, P.A., Proc. 19th European Photovoltaic Solar Energy Conf. (2004) p. 455.Google Scholar
26.Song, D., Straub, A., Widenborg, P., Vogl, B., Campbell, P., Huang, Y., and Aberle, A.G., Proc. 19th European Photovoltaic Solar Energy Conf. (2004) p. 1193.Google Scholar
27.Beaucarne, G., Bourdais, S., Slaoui, A., and Poortmans, J., Appl. Phys. A 79 (2004) p. 469.CrossRefGoogle Scholar
28.Nast, O. and Wenham, S., J. Appl. Phys. 88 (2000) p. 124.Google Scholar
29.Beaucarne, G., Gestel, D.V., Gordon, I., Carnel, L., Van Nieuwenhuysen, K., Ornaghi, C., Poortmans, J., Stöger-Pollach, M., and Schattschneider, P., Proc. 19th European Photovoltaic Solar Energy Conf. (2004) p. 467.Google Scholar
30.Van Gestel, D., Gordon, I., Carnel, L., Pinckney, L.R., Mayolet, A., D'Haen, J., Beaucarne, G., and Poortmans, J., Mat. Res. Soc. Symp. Proc. 910 (2006) A26–04.CrossRefGoogle Scholar
31.Straub, A., Inns, D., Terry, M.L., Huang, Y., Widenborg, P.I., and Aberle, A.G., J. Cryst. Growth 280 (2005) p. 385. 280 (2005) p. 385.Google Scholar
32.Rau, B., Schneider, J., Muske, M., Sieber, I., Gall, S., Stöger-Pollach, M., Schattschneider, P., and Fuhs, W., Proc. 19th European Photovoltaic Solar Energy Conf. (2004) p. 1131.Google Scholar
33.Gordon, I., Van Gestel, D., Carnel, L., Beaucarne, G., Poortmans, J., Pinckney, L., and Mayolet, A., Proc. 21st European Photovoltaic Solar Energy Conf. (2006) p. 992.Google Scholar
34.Carnel, L., Gordon, I., Van Nieuwenhuysen, K., Van Gestel, D., Beaucarne, G., and Poortmans, J., Thin Solid Films 487 (2005) p. 147.Google Scholar
35.Keevers, M.J., Turner, A., Schubert, U., Basore, P.A., and Green, M.A., Proc. 20th European Photovoltaic Solar Energy Conf. (2005) p. 1305.Google Scholar
36.Neto, A.L. Baia, Lambertz, A., Carius, R., and Finger, F., J. Non-Cryst. Solids 299–302 (2002) p. 274.Google Scholar
37.Yan, B., Yue, G., Yang, J., Guha, S., Williamson, D.L., Han, D., and Jiang, C.-S., Appl. Phys. Lett. 85 (11) (2004) p. 1955.Google Scholar
38.Yan, B., Yue, G., Owens, J.M., Yang, J., and Guha, S., Proc. 4th World Conf. on Photovoltaic Energy Conversion (2006).Google Scholar
39.Klein, S., Mai, Y., Finger, F., Donker, M.N., and Carius, R., 15th Int. Photovoltaic Science and Engineering Conf. (PVSEC-15), 49–2 (2005) p. 736.Google Scholar
40.Matsui, T., Matsuda, A., and Kondo, M., Proc. 19th European Photovoltaic Solar Energy Conf. (2004) p. 1407.Google Scholar
41.Goya, S., Nakano, Y., Watanabe, T., Yamashita, N., and Yonekura, Y., Proc. 19th European Photovoltaic Solar Energy Conf. (2004) p. 1407.Google Scholar
42.Mai, Y., Klein, S., Carius, R., Stiebig, H., Geng, X., and Finger, F., Appl. Phys. Lett. 87 073503 (2005).Google Scholar
43.Yamamoto, K., Nakajima, A., Yoshimi, M., Sawada, T., Fukuda, S., Suezaki, T., Ichikawa, M., Koi, Y., Goto, M., Meguro, T., Matsuda, T., Kondo, M., Sasaki, T., and Tawada, Y., Tech. Dig. 15th Int. Photovoltaic Science and Engineering Conf. 34–1 (2005) p. 529.Google Scholar
44.Repmann, T., Kilper, T., Appenzeller, W., Zahren, C., Stiebig, H., and Rech, B., Conf. Record 31st IEEE Photovoltaic Specialists Conf., IEEE Cat. No. 05CH37608 (January 2005) p. 1383.Google Scholar
45.Stiebig, H., Reetz, W., Haase, C., Repmann, T., Rech, B., Tech. Dig. 15th Int. Photovoltaic Science and Engineering Conf. (PVSEC-15) (2005) p. 561.Google Scholar
46.Carnel, L., Van Gestel, I.G.D., Pinckney, L., Mayolet, A., D'Haen, J., Beaucarne, G., and Poortmans, J., Proc. 4th World Conf. on Photovoltaic Energy Conversion (2006) in press.Google Scholar
47.Basore, P., Proc. 21st European Photovoltaic Solar Energy Conf. (2006) p. 544.Google Scholar