Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-20T17:44:59.924Z Has data issue: false hasContentIssue false

Alloy design for mechanical properties: Conquering the length scales

Published online by Cambridge University Press:  09 April 2019

Irene J. Beyerlein
Affiliation:
Department of Mechanical Engineering, Materials Department, University of California, Santa Barbara, USA; [email protected]
Shuozhi Xu
Affiliation:
California NanoSystems Institute, University of California, Santa Barbara, USA; [email protected]
Javier Llorca
Affiliation:
IMDEA Materials Institute, and Department of Materials Science, Polytechnic University of Madrid, Spain; [email protected]
Jaafar A. El-Awady
Affiliation:
Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, USA; [email protected]
Jaber R. Mianroodi
Affiliation:
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH; and Material Mechanics, RWTH Aachen University, Germany; [email protected]
Bob Svendsen
Affiliation:
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH; and Material Mechanics, RWTH Aachen University, Germany; [email protected]
Get access

Abstract

Predicting the structural response of advanced multiphase alloys and understanding the underlying microscopic mechanisms that are responsible for it are two critically important roles that modeling plays in alloy development. The demonstration of superior properties of an alloy, such as high strength, creep resistance, high ductility, and fracture toughness, is not sufficient to secure its use in widespread applications. Still, a good model is needed to take measurable alloy properties, such as microstructure and chemical composition, and forecast how the alloy will perform in specified mechanical deformation conditions, including temperature, time, and rate. Here, we highlight recent achievements using multiscale modeling in elucidating the coupled effects of alloying, microstructure, and mechanism dynamics on the mechanical properties of polycrystalline alloys. Much of the understanding gained by these efforts relies on the integration of computational tools that vary over many length scales and time scales, from first-principles density functional theory, atomistic simulation methods, dislocation and defect theory, micromechanics, phase-field modeling, single crystal plasticity, and polycrystalline plasticity.

Type
Computational Design And Development Of Alloys
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashby, M.F., Cebon, D., J. Phys. IV 3, C71 (1993).Google Scholar
Hall, E.O., Proc. Phys. Soc. Lond. 64, 747 (1951).CrossRefGoogle Scholar
Petch, N.J., J. Iron Steel Inst. Lond. 173, 25 (1953).Google Scholar
Hume-Rothery, W., Powell, H.M., Z. Kristallogr. 91, 23 (1935).Google Scholar
Nie, J., Wang, Y., MRS Bull . 44 (4), 281 (2019).Google Scholar
Rodríguez-Veiga, A., Bellón, B., Papadimitriou, I., Esteban-Manzanares, G., Sabirov, I., Llorca, J., J. Alloys Compd. 757, 504 (2018).CrossRefGoogle Scholar
Liu, H., Papadimitriou, I., Lin, F.X., Llorca, J., Acta Mater . 167, 121 (2019).CrossRefGoogle Scholar
Liu, H., Bellón, B., Llorca, J., Acta Mater . 132, 611 (2017).CrossRefGoogle Scholar
Esteban-Manzanares, G., Martínez, E., Segurado, J., Capolungo, L., Llorca, J., Acta Mater . 162, 189 (2019).CrossRefGoogle Scholar
Kocks, U.F., Prog. Mater. Sci. 19, 1 (1975).Google Scholar
Santos-Güemes, R., Esteban-Manzanares, G., Papadimitriou, I., Segurado, J., Capolungo, L., Llorca, J., J. Mech. Phys. Solids 118, 228 (2018).CrossRefGoogle Scholar
Koizumi, Y., Nukaya, T., Takeshi, S., Suzuki, S., Kurosu, S., Li, Y., Matsumoto, H., Sato, K., Tanaka, Y., Chiba, A., Acta Mater . 60, 2901 (2012).CrossRefGoogle Scholar
Viswanathan, G.B., Shi, R., Genc, A., Vorontsov, V.A., Kovarik, L., Rae, C.M.F., Mills, M.J., Scr. Mater. 94, 5 (2015).CrossRefGoogle Scholar
Rao, Y., Smith, T.M., Mills, M.J., Ghazisaeidi, M., Acta Mater . 148, 173 (2018).CrossRefGoogle Scholar
Kontis, P., Li, Z., Collins, D.M., Cormier, J., Raabe, D., Gault, B., Scr. Mater. 145, 76 (2018).CrossRefGoogle Scholar
Wang, Y., Li, J., Acta Mater. 58, 1212 (2010).CrossRefGoogle Scholar
Beyerlein, I.J., Hunter, A., Philos. Trans. R. Soc. Lond. A 374, 20150166 (2016).CrossRefGoogle Scholar
Mianroodi, J.R., Hunter, A., Beyerlein, I.J., Svendsen, B., J. Mech. Phys. Solids 95, 719 (2016).CrossRefGoogle Scholar
Shi, R., McAllister, D.P., Zhou, N., Detor, A.J., DiDomizio, R., Mills, M.J., Wang, Y., Acta Mater . 164, 220 (2019).CrossRefGoogle Scholar
Mianroodi, J.R., Shanthraj, P., Kontis, P., Gault, B., Raabe, D., Svendsen, B., under review (2018).Google Scholar
Svendsen, B., Shanthraj, P., Raabe, D., J. Mech. Phys. Solids 112, 619 (2018).CrossRefGoogle Scholar
Kubin, L.P., Canova, G., Condat, M., Devincre, B., Pontikis, V., Bréechet, Y., Solid State Phenom . 23, 455 (1992).CrossRefGoogle Scholar
Ghoniem, N.M., Tong, S.-H., Sun, L.Z., Phys. Rev. B Condens. Matter 61, 913 (2000).10.1103/PhysRevB.61.913CrossRefGoogle Scholar
Zbib, H.M., Rhee, M., Hirth, J.P., Int. J. Plast. 18, 1133 (2002).CrossRefGoogle Scholar
Weygand, D., Friedman, L.H., Van der Giessen, E., Needleman, A., Model. Simul. Mater. Sci. Eng. 10, 437 (2002).CrossRefGoogle Scholar
El-Awady, J.A., Fan, H., Hussein, A.M., in Multiscale Materials Modeling for Nanomechanics, Weinberger, C., Tucker, G., Eds. (Springer, Cham, Switzerland, 2016), pp. 337371.CrossRefGoogle Scholar
Hussein, A.M., Rao, S.I., Uchic, M.D., Parthasarathy, T.A., El-Awady, J.A., J. Mech. Phys. Solids 99, 146 (2017).CrossRefGoogle Scholar
Yang, H., Li, Z., Huang, M., Comput. Mater. Sci. 75, 52 (2013).CrossRefGoogle Scholar
Huang, M., Zhao, L., Tong, J., Int. J. Plast. 28, 141 (2012).CrossRefGoogle Scholar
Gao, S., Fivel, M., Ma, A., Hartmaier, A., J. Mech. Phys. Solids 76, 276 (2015).CrossRefGoogle Scholar
Tomé, C.N., Beyerlein, I.J., McCabe, R.J., Wang, J., in Engineering (ICME) for Metals: Reinvigorating Engineering Design with Science, Horstemeyer, M.F., Ed. (Wiley, Hoboken, NJ, 2018), pp. 283336.Google Scholar
Kim, N.J., Mater. Sci. Technol. 30, 1925 (2014).CrossRefGoogle Scholar
Kulekci, M.K., Int. J. Adv. Manuf. Technol. 39, 851 (2008).CrossRefGoogle Scholar
Suh, B., Shim, M.S., Shin, K.S., Kim, N.J., Scr. Mater 84, 1 (2014).CrossRefGoogle Scholar
Partridge, P.G., Metall. Rev. 12, 169 (1967).Google Scholar
Yoo, M.H., Metall. Trans. A 124, 409 (1981).CrossRefGoogle Scholar
Arul Kumar, M., Beyerlein, I.J., Tomé, C.N., J. Alloys Compd. 695, 1488 (2017).CrossRefGoogle Scholar
Lentz, M., Klaus, M., Coelho, R.S., Schaefer, N., Schmack, F., Reimers, W., Clasuen, B., Metall. Mater. Trans. 45A, 5721 (2014).CrossRefGoogle Scholar
Qiao, H., Agnew, S.R., Wu, P.D., Int. J. Plast. 65, 61 (2015).CrossRefGoogle Scholar
Xu, S., Liu, T., Chen, H., Miao, Z., Zhang, Z., Zeng, W., Mater. Sci. Eng. A 565, 96 (2013).CrossRefGoogle Scholar
Muhammad, W., Mohammadi, M., Kang, J., Mishra, R.K., Inal, K., Int. J. Plast. 70, 30 (2015).CrossRefGoogle Scholar
Zhou, P., Beeh, E., Friedrich, H.E., J. Mater. Eng. Perform. 25, 853 (2013).CrossRefGoogle Scholar
Zachariah, Z., Tatiparti, S.S.V., Mishra, S.K., Ramakrishnan, N., Ramamurty, U., Mater. Sci. Eng. A 572, 8 (2013).CrossRefGoogle Scholar
Yi, S., Bolen, J., Heineman, F., Letzig, D., Acta Mater . 58, 592 (2010).CrossRefGoogle Scholar
McDowell, D.L., in Computational Materials System Design, Shin, D., Saal, J., Eds. (Springer, Cham, Switzerland, 2018), pp. 125.Google Scholar
Keshavarz, S., Ghosh, S., Int. J. Solids Struc. 55, 17 (2015).CrossRefGoogle Scholar
Luo, A.A., Int. Mater. Rev. 49, 13 (2004).CrossRefGoogle Scholar
De Cooman, B.C., Estrin, Y., Kim, S.K., Acta Mater . 142, 283 (2018).CrossRefGoogle Scholar
Bagri, A., Weber, G., Stinville, J.C., Lenthe, W.C., Pollock, T.M., Woodward, C., Ghosh, S., Metall. Mater. Trans. A 49, 5727 (2018).CrossRefGoogle Scholar
Pinz, M., Weber, G., Lenthe, W.C., Uchic, M.D., Pollock, T.M., Ghosh, S., Acta Mater . 157, 245 (2018).CrossRefGoogle Scholar
Beyerlein, I.J., Arul Kumar, M., in Handbook of Materials Modeling, Andreoni, W., Yip, S., Eds. (Springer Nature, Cham, Switzerland, 2018), pp. 136.Google Scholar
Simkin, B.A., Crimp, M.A., Bieler, T.R., Intermetallics 15, 55 (2007).CrossRefGoogle Scholar
Yang, F., Yin, S.M., Li, S.X., Zhang, Z.F., Mater. Sci. Eng. A 491, 131 (2008).CrossRefGoogle Scholar
Yin, S.M., Yang, F., Yang, X.M., Wu, S.D., Li, S.X., Li, G.Y., Mater. Sci. Eng. A 494, 397 (2008).CrossRefGoogle Scholar
Lentz, M., Risse, M., Schaefer, N., Reimers, W., Beyerlein, I.J., Nat. Commun. 7, 11068 (2016).CrossRefGoogle Scholar
Cheng, J., Ghosh, S., J. Mech. Phys. Solids 99, 512 (2017).CrossRefGoogle Scholar
Abdolvand, H., Wilkinson, A.J., Acta Mater . 105, 219 (2016).CrossRefGoogle Scholar
Ardeljan, M., Beyerlein, I.J., Knezevic, M., Int. J. Plast. 99, 81 (2017).CrossRefGoogle Scholar
Arul Kumar, M., Beyerlein, I.J., Tomé, C.N., Acta Mater . 116, 143 (2016).CrossRefGoogle Scholar
Kumar, M.A., Beyerlein, I.J., Lebensohn, R.A., Tome, C.N., Mater. Sci. Eng. A 706, 295 (2017).CrossRefGoogle Scholar
Cottura, M., Appolaire, B., Finel, A., Le Bouar, Y., J. Mech. Phys. Solids 94, 473 (2016).CrossRefGoogle Scholar
Wu, R., Sandfeld, S., J. Alloys Compd. 703, 389 (2017).CrossRefGoogle Scholar
Wu, R., Zaiser, M., Sandfeld, S., Int. J. Plast. 95, 142 (2017).CrossRefGoogle Scholar
Li, Z., Pradeep, K.G., Deng, Y., Raabe, D., Tasan, C.C., Nature 534, 227 (2016).CrossRefGoogle Scholar
Xiong, T., Zhou, Y., Pang, J., Beyerlein, I.J., Ma, X., Zheng, S., Mater. Sci. Eng. A 720, 231 (2018).CrossRefGoogle Scholar
Yuan, R., Beyerlein, I.J., Zhou, C., Acta Mater . 110, 8 (2016).CrossRefGoogle Scholar
Beyerlein, I.J., Zhang, X., Misra, A., Annu. Rev. Mater. Res. 44, 329 (2014).CrossRefGoogle Scholar
Beyerlein, I.J., Demkowicz, M.J., Misra, A., Uberuaga, B.P., Prog. Mater. Sci. 74, 125 (2015).CrossRefGoogle Scholar
The Minerals, Metals & Materials Society (TMS), Modeling Across Scales: A Roadmapping Study for Connecting Materials Models and Simulations Across Length and Time Scales (Warrendale, PA, 2015).Google Scholar
The Minerals, Metals & Materials Society (TMS), Advanced Computation and Data in Materials and Manufacturing: Core Knowledge Gaps and Opportunities (Pittsburgh, 2018).Google Scholar