Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T21:18:00.008Z Has data issue: false hasContentIssue false

Advances in thermoelectrics: From single phases to hierarchical nanostructures and back

Published online by Cambridge University Press:  07 August 2015

Mercouri G. Kanatzidis*
Affiliation:
Northwestern University, USA; [email protected]
Get access

Abstract

With more than two-thirds of utilized energy being lost as waste heat, there is compelling motivation for high-performance thermoelectric materials that can directly convert heat to electrical energy. However, over the decades, practical realization of thermoelectric materials has been limited by the hitherto low figure of merit, ZT, which governs the Carnot efficiency. This article describes our long-standing efforts to advance ZT to record levels starting from exploratory synthesis and evolving into the nanostructuring and panoscopic paradigm, which has helped to usher in a new era of investigation for thermoelectrics. The term panoscopic is meant as an attempt to integrate all length scales and multiple physical concepts into a single material. As in any other energy-conversion technology involving materials, thermoelectrics research is a challenging exercise in taming “contra-indicated” properties. Critical properties such as high electrical conductivity, thermoelectric power, low thermal conductivity, and mechanical strength do not tend to favor coexistence in a single material. How these can be achieved in certain systems leading to record values of ZT is also described. Endotaxial nanostructures and mesoscale engineering in thermoelectrics enable effective phonon scattering with negligible electron scattering. By combining all relevant length scales hierarchically, we can achieve large enhancements in thermoelectric performance. The field, however, continues to produce surprises.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kanatzidis, M.G., Chem. Mater. 22, 648 (2010).Google Scholar
Sootsman, J.R., Chung, D.Y., Kanatzidis, M.G., Angew. Chem. Int. Ed. 48, 8616 (2009).Google Scholar
Harman, T.G., Honig, J.M., Thermoelectric and Thermomagnetic Effects and Application (McGraw-Hill Education, New York, 1967).Google Scholar
Wood, C., Rep. Prog. Phys. 51, 459 (1988).Google Scholar
Rowe, D.M., CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, FL, 1995).Google Scholar
Altenkirch, E., Physik. Z. 12, 920 (1911).Google Scholar
Eogers, P.E., Ridihalgh, J.L., J. Spacecr. Rockets 11, 704 (1974).Google Scholar
Maag, W.L., Patrick, M., Frshbach, L.H., Contract 503, 25 (1973).Google Scholar
Elsner, N., Chin, J., Staley, H., Annual Report, 1 Jul. 1974–30 Jun. 1975 General Atomic Co., San Diego, CA. 1, 1976.Google Scholar
Rowe, D.M., “Thermoelectric Power Generation” Proc. IEEE [Online Early Access]. Published Online: 1978, http://digital-library.theiet.org/content/journals/10.1049/piee.1978.0247.Google Scholar
Skrabek, E., Proc. 9th Intersociety Energy Convers. Eng. Conf. 1, 160 (1974).Google Scholar
Decheva, S., Dimitrova, S., Bulg. J. Phys. 5, 94 (1978).Google Scholar
Hicks, L.D., Dresselhaus, M.S., Phys. Rev. B: Condens. Matter 47, 12727 (1993).Google Scholar
Nolas, G.S., Slack, G.A., Cohn, J.L., Schujman, S.B., Ieee, I., “The Next Generation of Thermoelectric Materials,” Proc. XVII International Conference on Thermoelectrics 98 (1998), pp. 294297.Google Scholar
Chung, D.Y., Hogan, T.P., Brazis, P., Rocci-Lane, M., Kannewurf, C.R., Bastea, M., Uher, C., Kanatzidis, M.G., Science 287, 1024 (2000).Google Scholar
Chung, D.Y., Hogan, T.P., Rocci-Lane, M., Brazis, P., Ireland, J.R., Kannewurf, C.R., Bastea, M., Uher, C., Kanatzidis, M.G., J. Am. Chem. Soc. 126, 6414 (2004).Google Scholar
Hsu, K.F., Loo, S., Guo, F., Chen, W., Dyck, J.S., Uher, C., Hogan, T.P., Polychroniadis, E.K., Kanatzidis, M.G., Science 303, 818 (2004).Google Scholar
Shi, X., Yang, J., Salvador, J.R., Chi, M.F., Cho, J.Y., Wang, H., Bai, S.Q., Yang, J.H., Zhang, W.Q., Chen, L.D., J. Am. Chem. Soc. 133, 7837 (2011).Google Scholar
Nolas, G.S., Morelli, D.T., Tritt, T.M., Annu. Rev. Mater. Sci. 29, 89 (1999).Google Scholar
Sales, B.C., Chakoumakos, B.C., Mandrus, D., Phys. Rev. B Condens. Matter 61, 2475 (2000).CrossRefGoogle Scholar
Shi, X., Kong, H., Li, C.P., Uher, C., Yang, J., Salvador, J.R., Wang, H., Chen, L., Zhang, W., Appl. Phys. Lett. 92, 182101 (2008).Google Scholar
Zaitsev, V.K., Fedorov, M.I., Gurieva, E.A., Eremin, I.S., Konstantinov, P.P., Samunin, A.Y., Vedernikov, M.V., Phys. Rev. B Condens. Matter 74, 045207 (2006).Google Scholar
Liu, W., Tan, X., Yin, K., Liu, H., Tang, X., Shi, J., Zhang, Q., Uher, C., Phys. Rev. Lett. 108, 166601 (2012).Google Scholar
Chen, G., Dresselhaus, M.S., Dresselhaus, G., Fleurial, J.P., Caillat, T., Int. Mater. Rev. 48, 45 (2003).Google Scholar
Zhao, H., Sui, J., Tang, Z., Lan, Y., Jie, Q., Kraemer, D., McEnaney, K., Guloy, A., Chen, G., Ren, Z., Nano Energy 7, 97 (2014).Google Scholar
Ravich, B.A., Efimova, B.A., Smirnov, I.A., Semiconducting Lead Chalcogenides (Plenum, New York, 1970).Google Scholar
Mrotzek, A., Kanatzidis, M.G., Acc. Chem. Res. 36, 111 (2003).Google Scholar
Kanatzidis, M.G., Acc. Chem. Res. 38, 359 (2005).Google Scholar
Chung, D.Y., Choi, K.S., Iordanidis, L., Schindler, J.L., Brazis, P.W., Kannewurf, C.R., Chen, B.X., Hu, S.Q., Uher, C., Kanatzidis, M.G., Chem. Mater. 9, 3060 (1997).Google Scholar
Kanatzidis, M.G., McCarthy, T.J., Tanzer, T.A., Chen, L.H., Iordanidis, L., Hogan, T., Kannewurf, C.R., Uher, C., Chen, B.X., Chem. Mater. 8, 1465 (1996).Google Scholar
Kanatzidis, M.G., Recent Trends in Thermoelectric Materials Research 69, 51 (2001).Google Scholar
Bilc, D., Mahanti, S.D., Quarez, E., Hsu, K.F., Pcionek, R., Kanatzidis, M.G., Phys. Rev. Lett. 93, 146403 (2004).CrossRefGoogle Scholar
Poudeu, P.F.R., D'Angelo, J., Downey, A.D., Short, J.L., Hogan, T.P., Kanatzidis, M.G., Angew. Chem. Int. Ed. 45, 3835 (2006).Google Scholar
Quarez, E., Hsu, K.F., Pcionek, R., Frangis, N., Polychroniadis, E.K., Kanatzidis, M.G., J. Am. Chem. Soc. 127 (25), 9177 (2005).Google Scholar
He, J., Girard, S.N., Kanatzidis, M.G., Dravid, V.P., Adv. Funct. Mater. 20, 764 (2010).Google Scholar
He, J., Sootsman, J.R., Girard, S.N., Zheng, J.-C., Wen, J., Zhu, Y., Kanatzidis, M.G., Dravid, V.P., J. Am. Chem. Soc. 132, 8669 (2010).Google Scholar
Girard, S.N., He, J., Li, C., Moses, S., Wang, G., Uher, C., Dravid, V.P., Kanatzidis, M.G., Nano Lett. 10, 2825 (2010).CrossRefGoogle Scholar
Girard, S.N., He, J., Zhou, X., Shoemaker, D., Jaworski, C.M., Uher, C., Dravid, V.P., Heremans, J.P., Kanatzidis, M.G., J. Am. Chem. Soc. 133, 16588 (2011).CrossRefGoogle Scholar
Biswas, K., He, J., Zhang, Q., Wang, G., Uher, C., Dravid, V.P., Kanatzidis, M.G., Nat. Chem. 3, 160 (2011).CrossRefGoogle Scholar
Biswas, K., He, J., Blum, I.D., Wu, C.-I., Hogan, T., Seidman, D.N., Dravid, V.P., Kanatzidis, M.G., Nature 489, 414 (2012).Google Scholar
Zhao, L.D., Lo, S.H., Zhang, Y.S., Sun, H., Tan, G.J., Uher, C., Wolverton, C., Dravid, V.P., Kanatzidis, M.G., Nature 508, 373 (2014).Google Scholar
Zhao, L.-D., Dravid, V.P., Kanatzidis, M.G., Energy Environ. Sci. 7 (1), 251 (2014).Google Scholar