Published online by Cambridge University Press: 29 November 2013
The changes in Electron Spectroscopy for Chemical Analysis (ESCA) equipment since 1982 have significantly expanded the range of applications and general utility of the technique. Most of these changes center around improvements in spatial resolution although there have also been improvements in speed and energy resolution. The implications of these changes extend beyond the obvious ability to obtain information from small features on samples.
The three major approaches to controlling spatial resolution are: (1) defined area x-ray sources, (2) limited field-of-view electron analyzers, and (3) imaging electron analyzers. Each of these will be reviewed briefly and their salient features contrasted. These advances in the instrumentation have brought about the following benefits to users of the ESCA technique: (1) ability to analyze small features, (2) rapid depth profiling, (3) multiple samples, and (4) improved charging control. Examples are included.