Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-05T14:09:56.592Z Has data issue: false hasContentIssue false

Advanced Diagnostics and Modeling of Spray Processes

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

The microstructure and properties of thermally sprayed deposits depend critically on the thermal- and kinetic-energy histories of the particles entrained in the hot-gas jet. At impact, the particle temperature, molten fraction, size, velocity, and chemistry, along with substrate temperature and surface characteristics, control the morphology of individual particle splats. These factors control the adhesion, strength, microstructure, and porosity of a coating and influence the residual-stress state. In order to produce higher-quality coatings and expand the use of this versatile family of technologies, the ability to model and measure particle behavior is essential.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Alkimov, A.P., Kosarev, V.F., and Papyrin, A.N., Sov. Phys. Dokl. 35 (12) (1990) p. 1047.Google Scholar
2.Smith, M.F., Brockmann, J.E., Dykhuizen, R.C., Gilmore, D.L., Neiser, R.A., and Roemer, T.J., in Solid Freeform and Additive Fabrication, edited by Dimos, D., Danforth, S.C., and Cima, M.J. (Mater. Res. Soc. Symp. Proc. 542, Warrendale, PA, 1998) p. 65.Google Scholar
3.Dykhuizen, R.C. and Smith, M.F., J. Thermal Spray Technol. 7 (1998) p. 205.Google Scholar
4.Gilmore, D.L., Dykhuizen, R.C., Neiser, R.A., Roemer, T.J., and Smith, M. F., J. Thermal Spray Technol. 8 (1999) p. 576.Google Scholar
5.Williamson, R.L., Fincke, J.R., and Chang, C.H., “A Computational Examination of the Sources of Statistical Variance in Particle Parameters During Thermal Plasma Spraying,Plasma Chem. Plasma Proc. 20 (3) (2000) in press.Google Scholar
6.Pfender, E. and Lee, Y., Plasma Chem. Plasma Proc. 5 (1985) p. 211.Google Scholar
7.Chen, X. and Pfender, E., Plasma Chem. Plasma Proc. 3 (1983) p. 97.Google Scholar
8.Chen, X. and Pfender, E., Plasma Chem. Plasma Proc. 3 (1983) p. 351.Google Scholar
9.Pfender, E. and Lee, Y.C., Plasma Chem. Plasma Proc. 5 (3) (1985) p. 211.Google Scholar
10.Wan, Y., Prasad, V., Wang, G.-X., Sampath, S., and Fincke, J., ASME J. Heat Transfer 121 (1999) p. 691.Google Scholar
11.Boulos, M., Fauchais, P., Vardelle, A., and Pfender, E., in Plasma Spraying, edited by Suryanarayanan, R. (World Scientific, Singapore, 1993) p. 3.Google Scholar
12.Wan, Y., Fincke, J., Sampath, S., and Prasad, V., in 14th Int. Symp. on Plasma Chemistry, edited by Hrabovsky, M., Konrad, M., and Kopecky, V. (Institute of Plasma Physics, Prague, 1999) p. 1983.Google Scholar
13.Fincke, J., Swank, W., and Haggard, D., in Transport Phenomena in Materials Processing and Manufacturing, edited by Alam, M.K., Grigoropoulous, C.P., Joshi, Y., Karwe, M.V., Lavine, A.S., Moon, T.J., and Smith, R.N., ASME HTD, Vol. 280 (The American Society of Mechanical Engineers, New York, 1994) p. 121.Google Scholar
14.Chang, C.H. and Ramshaw, J.D., Plasma Chem. Plasma Proc. 13 (1993) p. 189.Google Scholar
15.Chang, C.H. and Ramshaw, J.D., Plasma Chem. Plasma Proc. (Suppl.) 16 (1996) p. 5S.Google Scholar
16.Power, G.D., Barber, T.J., and Chiappetta, L.M., in 28th Joint Propulsion Conf., Nashville, TN, 1993 (American Institute of Aeronautics and Astronautics, Washington, D.C.), AIAA Paper No. 92–3598.Google Scholar
17.Smith, E.B., Power, G.D., Barber, T.J., and Chiappetta, L.M., in Thermal Spray: International Advances in Coatings Technology, edited by Berndt, C.C. (ASM International, Materials Park, OH, 1992) p. 805.Google Scholar
18.Chang, C.H. and Moore, R.L., in Thermal Spray Science and Technology, edited by Berndt, C.C. and Sampath, S. (ASM International, Materials Park, OH, 1995) p. 207.Google Scholar
19.Yang, X., Eidelman, S., and Lottati, I., in Thermal Spray Science and Technology, edited by Berndt, C.C. and Sampath, S. (ASM International, Materials Park, OH, 1995) p. 213.Google Scholar
20.Sinha, N., York, B.J., Hosangadi, A., and Dash, S.M., in Thermal Spray Science and Technology, edited by Berndt, C.C. and Sampath, S. (ASM International, Materials Park, OH, 1995) p. 199.Google Scholar
21.Oberkampf, W.L. and Talpallikar, M., J. Thermal Spray Technol. 5 (1996) pp. 53 and 62.Google Scholar
22.Hassan, B., Lopez, A.R., and Oberkampf, W.L., in Thermal Spray Science and Technology, edited by Berndt, C.C. and Sampath, S. (ASM International, Materials Park, OH, 1995) p. 193.Google Scholar
23.Hassan, B., Oberkampf, W.L., Neiser, R.A., Lopez, A.R., and Roemer, T.J., in 27th Fluid Dynamic Conf., New Orleans, LA, 1996 (American Institute of Aeronautics and Astronautics, Washington, D.C.), AIAA Paper No. 96–1939.Google Scholar
24.Gordon, S. and McBride, B.J., Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman Jouguet Detonations, NASA SP-273, Interim Revision, March 1976 (new version 1989) (NASA Lewis Research Center, Cleveland, OH).Google Scholar
25.Lopez, A.R., Hassan, B., Oberkampf, W.L., Neiser, R.A., and Roemer, T.J., J. Thermal Spray Technol. 7 (1998) p. 374.Google Scholar
26.Fincke, J.R., Haggard, D.C., and Swank, W.D., “Particle Temperature Measurement in the Thermal Spray Process,” J. Thermal Spray Technol. (2000) in press.Google Scholar
27.Fincke, J.R., Swank, W.D., and Jeffery, C.L., IEEE Trans. Plasma Sci. 18 (1990) p. 948.Google Scholar
28.Fincke, J.R., Swank, W.D., Jeffery, C.L., and Mancuso, C.A., Meas. Sci. Technol. 4 (1993) p. 559.Google Scholar
29.Moreau, C., Gougeon, P., Lamontagne, M., Lacasse, V., Vaudreuil, G., and Cielo, P., in Thermal Spray Industrial Applications, edited by Berndt, C.C. and Sampath, S. (ASM International, Materials Park, OH, 1994) p. 431.Google Scholar
30.Moreau, C., Gougeon, P., Burgess, A., and Ross, D., in Thermal Spray Science and Technology, edited by Berndt, C.C. and Sampath, S. (ASM International, Materials Park, OH, 1995) p. 141.Google Scholar
31.Vardelle, A., Baronnet, J., Vardelle, M., and Fauchais, P., IEEE Trans. Plasma Sci. 8 (1980) p. 418.Google Scholar
32.Smith, M.F., O'Hern, T.J., Brockmann, J.E., Neiser, R.A., and Roemer, T.J., in Thermal Spray Science and Technology, edited by Berndt, C.C. and Sampath, S. (ASM International, Materials Park, OH, 1995) p. 105.Google Scholar
33.Bourque, G., Lamontagne, M., and Moreau, C., in Thermal Spray Surface Engineering via Applied Research, edited by Berndt, C.C. (ASM International, Materials Park, OH, 2000) p. 45.Google Scholar
34.Hantzsche, H., in 7th Int. Metal Spraying Conf. (Edison Welding Institute, London, 1973) p. 1.Google Scholar
35.Xu, X., Chen, G., and Shen, Y., in 1st Plasma-Technik-Symp., edited by Eschnauer, H., Huber, P., Nicoll, A., and Sandmeier, S. (Plasma-Technik, Lucerne, 1988) p. 99.Google Scholar
36.Kuroda, S., Fukushima, T., Kitahara, S., and Fujimori, H., in 12th Int. Conf. of Thermal Spraying, edited by Bucklow, I.A. (The Welding Institute, Cambridge, UK, 1989) p. 145.Google Scholar
37.Swank, W.D., Fincke, J.R., and Haggard, D.C., in Thermal Spray Science and Technology, edited by Berndt, C.C. and Sampath, S. (ASM International, Materials Park, OH, 1995) p. 111.Google Scholar
38.Fincke, J.R., Swank, W.D., and Haggard, D.C., in Thermal Spray Science and Technology, edited by Berndt, C.C. and Sampath, S. (ASM International, Materials Park, OH, 1995) p. 117.Google Scholar
39.Fincke, J.R., Swank, W.D., and Haggard, D.C., in Thermal Spray Science and Technology, edited by Berndt, C.C. and Sampath, S. (ASM International, Materials Park, OH, 1995) p. 123.Google Scholar
40.Moreau, C., in Proc. 15th Int. Thermal Spray Conf., edited by Coddet, C. (ASM International, Materials Park, OH, 1998) p. 1681.Google Scholar
41.Kruszewska, B. and Lesinski, J., Rev. Phys. Appl. 12 (1977) p. 1209.Google Scholar
42.Vardelle, M., Vardelle, A., Fauchais, P., and Boulos, M.I., J. AICE 29 (1983) p. 236.Google Scholar
43.Mihsin, J., Vardelle, M., Lesinski, J., and Fauchais, P., J. Phys. E: Sci. Instrum. 20 (1987) p. 620.Google Scholar
44.Fincke, J., Jeffery, C.L., and Englert, S.B., J. Phys. E: Sci. Instrum. 21 (1988) p. 367.Google Scholar
45.Tichenor, D.A., Mitchell, R.E., Hencken, K.R., and Niksa, S., Simultaneous In Situ Measurement of the Size, Temperature and Velocity of Particles in a Combustion Environment, Report No. SAND 84–8628 (Sandia National Laboratories, Albuquerque, NM, 1984).Google Scholar
46.Sakuta, T. and Boulos, M.I., in Proc. 8th Int. on Plasma Chemistry, edited by Akashi, K. (University of Tokyo, Japan, 1987) p. 371.Google Scholar
47.Sakuta, T. and Boulos, M.I., Rev. Sci. Instrum. 59 (1988) p. 285.Google Scholar