Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T21:49:25.906Z Has data issue: false hasContentIssue false

Adhesion and Friction of Thin Films

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Polymers are routinely placed between solid walls to provide lubrication or adhesion. Their function in these roles depends critically on the degree of dissipation within the polymer film and at the film/wall interface as the film shears or ruptures. Good lubrication is achieved by minimizing frictional dissipation while dissipation increases the strength of adhesive bonds.

Gent and Schultz suggested a direct link between frictional losses and the adhesive performance of polymers. This correspondence has been supported by recent experiments and by some of the molecular-dynamics simulations to be described. However we find that the correspondence breaks down when the molecular motion producing dissipation occurs at different locations during shear and rupture. In the following sections, we discuss the types of rate-dependent dissipation observed in thin films and the different factors that control whether dissipation occurs within the polymer or at the wall/film interface. The results suggest an origin for interesting memory effects observed in surface-force-apparatus (SFA) experiments on thin films and expose the atomic-scale processes that produce dissipation during internal rupture of a thin film.

Type
Theory and Simulation of Polymers at Interfaces
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Brown, H., MRS Bulletin 21 (1996) p. 24.CrossRefGoogle Scholar
2.Kendall, K., Science 263 (1994) p. 1720.CrossRefGoogle Scholar
3.Wool, R.P., Polymer Interfaces: Structure and Strength (Hanser, Munich, 1995).Google Scholar
4.Gent, A.N. and Schultz, J., J. Adhesion 3 (1972) p. 281.CrossRefGoogle Scholar
5.Gent, A. and Lai, S.M., J. Polym. Sci. B32 (1994) p. 1543.CrossRefGoogle Scholar
6.Mayer, A., Pith, T., Hu, G., and Lambla, M., J. Polym. Sci. 33 (1995) p. 1793.CrossRefGoogle Scholar
7.Baljon, A.R.C. and Robbins, M.O., Science 271 (1996) p. 482; A.R.C. Baljon and M.O. Robbins “Simulations of Energy Dissipation During Rupture of Adhesive Bonds” (unpublished manuscript).CrossRefGoogle Scholar
8.Gee, M.L., McGuiggan, P.M., Israelachvili, J.N., and Homola, A.M., J. Chem. Phys. 93 (1990) p. 1895; H. Yoshizawa, Y-L. Chen, and J.N. Israelachvili, J. Phys. Chem. 97 (1993) p. 4128.CrossRefGoogle Scholar
9.Granick, S., MRS Bulletin 21 (1996) p. 33.CrossRefGoogle Scholar
10.Kremer, K. and Grest, G.S., J. Chem. Phys. 92 (1990) p. 5057.CrossRefGoogle Scholar
11.Allen, M. and Tildesley, D., Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).Google Scholar
12.Thompson, P.A., Grest, G.S., and Robbins, M.O., Phys. Rev. Lett. 68 (1992) p. 3448; P.A. Thompson, M.O. Robbins, and G.S. Grest, Israel J. Chem. 35 (1995) p. 93.CrossRefGoogle Scholar
13.Manias, E., Hadziioannou, G., and ten Brinke, G., J. Chem. Phys. 101 (1994) p. 1721.CrossRefGoogle Scholar
14.Ferry, J.D., Viscoelastic Properties of Polymers (Wiley, New York, 1980).Google Scholar
15.Hu, H-W., Carson, G.A., and Granick, S., Phys. Rev. Lett. 66 (1991) p. 2758; G. Reiter, A.L. Demirel, J. Peanasky, L.L. Cai, and S. Granick, J. Chem. Phys. 101 (1994) p. 2606.CrossRefGoogle Scholar
16.Maugis, D., in Adhesion and Friction, edited by Grunze, M. and Kreuzer, H.J. (Springer Verlag, Berlin, 1990).Google Scholar
17.Kendall, K., J. Adhesion 7 (1974) p. 55.CrossRefGoogle Scholar
18.Chaudhury, M.K. and Owen, M.J., J. Phys. Chem. 97 (1993) p. 5722.CrossRefGoogle Scholar
19.de Gennes, P.G., C.R. Acad. Sci. 288 (1979) p. 219.Google Scholar
20.Thompson, P.A. and Robbins, M.O., Phys. Rev. A 41 (1990) p. 6830.CrossRefGoogle Scholar
21.Cieplak, M., Smith, E.D., and Robbins, M.O., Science 265 (1994) p. 1209; E. D. Smith, M. Cieplak, and M.O. Robbins, Phys. Rev. B in press.CrossRefGoogle Scholar
22.Baljon, A.R.C. and Robbins, M.O., in Micro/Nanotribology and its Applications, NATO Conference Proceedings, edited by Bhushan, B. (Kluwer Academics, Boston) in press.Google Scholar
23.Singer, I.L. and Pollock, H.M., eds., Fundamentals of Friction: Macroscopic and Microscopic Processes (Kluwer Academics, Dordrecht, 1991); B. Bhushan, ed., Handbook of Micro/Nanotribology (CRC Publishers, 1995).Google Scholar
24.Landman, U., Luedtke, W.D., and Nitzan, A., Surf. Sci. 210 (1990) p. L177.CrossRefGoogle Scholar
25.Thompson, P.A. and Robbins, M.O., Science 250 (1990) p. 792.CrossRefGoogle Scholar
26.Israelachvili, J.N. and Berman, A., Israel J. Chem. 35 (1995) p. 85.CrossRefGoogle Scholar
27.Pickett, G., Jasnow, D., and Balazs, A., Phys. Rev. Lett. 77 (1996) p. 671.CrossRefGoogle Scholar
28.Kramer, E.J., Norton, L.J., Dai, C., Sha, Y., and Hui, C., Faraday Society Discuss. 98 (1994) p. 31.CrossRefGoogle Scholar