Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-21T21:31:03.077Z Has data issue: false hasContentIssue false

Use of Thermodynamic Data to Determine Surface Tension and Viscosity of Metallic Alloys

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

During the last three decades, various thermodynamic databases have been compiled to be applied mainly to the calculation of phase diagrams of alloys, salts, and oxides. The accumulation and assessment of thermodynamic data and phase-equilibrium information to establish those databases is sometimes called the CALPHAD (calculated phase diagram) approach. The CALPHAD approach has been recognized as useful in various aspects of materials science and engineering. In addition to the use of thermodynamic databases for the calculation of phase diagrams, it would be very desirable to apply them to the calculation of other physicochemical quantities, such as surface tension. By doing this, not only can the Utility of databases be enlarged, but also a deeper understanding of the physical properties in question can be reached.

On the basis of the concepts just mentioned, we have applied those thermodynamic databases to the calculation of the surface tension of liquid alloys and molten ionic mixtures. In these calculations, we have applied Butler's equation for the surface tension of liquid alloys. In addition, we have modified Butler's equation to be extended to molten ionic mixtures by considering the relaxation structure in the surface. These approaches will lead us to develop a multifunctional data-bank System that will be widely applicable in the evaluation of physicochemical properties of liquid alloys and molten ionic mixtures from thermodynamic data.

In this article, we explain some physical modeis for the surface tension and viscosity of liquid alloys and molten ionic mixtures, in which thermodynamic data can be directly applied to evaluate these physical properties. In addition, the concept for the just-mentioned multifunctional thermodynamic data-bank System will be described by demonstrating the simultaneous calculation of phase diagrams, surface tension, and viscosity of some alloys used for new, Pb-free soldering materials.

Type
Computer Simulations From Thermodynamic Data: Materials Production and Development
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nishizawa, T., Mater. Trans. JIM. 33 (1992) p. 713.CrossRefGoogle Scholar
2.Bale, C.W. and Eriksson, G., Can. Metall. Quar. 29 (1990) p. 105.CrossRefGoogle Scholar
3.Tanaka, T. and Iida, T., Steel Res. 65 (1994) p. 21.CrossRefGoogle Scholar
4.Tanaka, T., Hack, K., Iida, T., and Hara, S., Z. Metallk. 87 (1996) p. 380.Google Scholar
5.Tanaka, T., Hara, S., Ogawa, M., and Ueda, T., Z. Metallk. 89 (1998) p. 368.Google Scholar
6.Tanaka, T., Hara, S., Ogawa, M., and Ueda, T., Molten Salt Forum 5–6 (1998) p. 213.Google Scholar
7.Tanaka, T., Hara, S., and Ueda, T., in Proc. 11th Int. Sytup. on Molten Salts (The Electrochemical Society, San Diego, 1998), p. 645.Google Scholar
8.Butler, J.A.V., Proc. R. Soc. London, Ser. A 135 (1932) p. 348.Google Scholar
9.Hoar, T.P. and Melford, D.A., Trans. Faradav Society 53 (1957) p. 315.CrossRefGoogle Scholar
10.Monma, K. and Sudo, H., J. Jpn. Inst. Met. 25 (1961) p. 65.CrossRefGoogle Scholar
11.Monma, K. and Sudo, H., J. Jpn. Inst. Met. 25 (1961) p. 143.CrossRefGoogle Scholar
12.Speiser, R., Poirier, D.R., and Yeum, K., Scripta Metall. 21 (1987) p. 687.CrossRefGoogle Scholar
13.Yeum, K.S., Speiser, R., and Poirier, D.R., Metall. Trans. B 20 (1989) p. 693.CrossRefGoogle Scholar
14.Hajra, J.P., Frohberg, M.G., and Lee, H-K., Z. Metallk. 82 (1991) p. 718.Google Scholar
15.Lee, H-K., Hajra, J.P., and Frohberg, M.G., Z. Metallk. 83 (1992) p. 8.Google Scholar
16.Lee, H-K., Frohberg, M.G., and Hajra, J.P., Steel Res. 64 (1993) p. 191.CrossRefGoogle Scholar
17.Roesner-Kuhn, M., Kuppermann, G., Thiedemann, U., Drewes, K., Schmidt-Lehmann, T., and Frohberg, M.G., Ber. Bunsenges. Phys. Chem. 102 (1989) p. 1163.CrossRefGoogle Scholar
18.Ohtani, H. and Ishida, K., J. Electron. Mater. 23 (1994) p. 747.CrossRefGoogle Scholar
19.Iida, T. and Guthrie, R.I.L., The Physical Properties of Liquid Metals (Clarendon Press, Oxford, 1988).Google Scholar
20.Taylor, J.W., Acta Metall. 4 (1956) p. 460.CrossRefGoogle Scholar
21.Hayes, R.H., Lukas, H.L., Effenberg, G., and Petzow, G., Z. Metallk. 77 (1986) p. 749.Google Scholar
22.Lacaze, J. and Sundman, B., Metall. Trans. A 22 (1991) p. 2211.CrossRefGoogle Scholar
23.Ansara, I. and Sundman, B., in Computer Handling and Dissemination of Data, edited by Glaeser, P.S. (Elsevier Science/North-Holland, 1987) p. 154.Google Scholar
24.Metzger, G., Z. Phys. Chem. 211 (1959) p. 1.CrossRefGoogle Scholar
25.Joud, J.C., Eustathopoulos, N., Bricard, A., and Desre, P., J. Chim. Phys. 70 (1973) p. 1290.CrossRefGoogle Scholar
26.Dzhemilev, N.K., Popel, S.I., and Tsarevskii, B.V., Fiz. Met. Metalloved. [Phys. Met. Metalloge (USSR)] 18 (1964) p. 83.Google Scholar
27.Kawai, Y., Mori, K., Kishimoto, M., Ishikura, K., and Shimoda, T., Tetsu-to-Hagane 60 (1974) p. 29.CrossRefGoogle Scholar
28.Shergin, L.M., Popel, S.I., and Tsarevskii, B.V., in Fiz. khim. poverkl. yavlenii rasp., edited by Eremenko, V.N. (Naukova Dumka, Kiev, 1971) p. 161.Google Scholar
29.NIST Motten Salt Database (National Institute of Standards and Technology, Gaithersburg, MD, 1987).Google Scholar
30.Sawada, S. and Nakamura, K., in Phase Diagramsfor Ceramists, vol. VII, edited by Cook, L.P. and McMurdie, H.F. (The American Ceramic Society, Westerville, OH, 1983).Google Scholar
31.Pelton, A.D., CALPHAD 12 (1988) p. 127.CrossRefGoogle Scholar
32.Sawada, S. and Nakamura, K., J. Phys. C 12 (1979) p. 1183.Google Scholar
33.Hirai, M., Isij Int. 33 (1993) p. 251.CrossRefGoogle Scholar
34.Seetharaman, S. and Sichen, D., Metall. Mater. Trans. B 25 (1994) p. 589.CrossRefGoogle Scholar
35.Sichen, D., Bygden, J., and Seetharaman, S., Metall. Mater. Trans. B 25 (1994) p. 519; G. Eriksson and K. Hack, Metall. Trans. B 21 (1990) p. 1013.CrossRefGoogle Scholar