Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-08T02:58:55.104Z Has data issue: false hasContentIssue false

Use of Nanotechnologies for Drug Delivery

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The emerging field of nanotechnology has an enormous potential contribution to make to the field of pharmaceutical materials science. The advantages of drug nanoparticles can be as simple as dissolution rate enhancement through increased surface area or as complex as targeted delivery through novel pathways. However, the application of many nanoscale technologies has been slow because of difficulties controlling the drug form with decreasing particle size and maintaining chemical and physical stability upon storage. Advancing beyond these limitations requires a unique understanding of both the material properties of the active ingredients as well as the physical chemistry of the nano-sized particle. This article will examine the current challenges facing the pharmaceutical industry in applying nanotechnology, with a focus on the deficiencies in understanding that need to be addressed to move forward.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Noyes, A.A. and Whitney, W.R.J. Am. Chem. Soc. 19 (1897) p.930.CrossRefGoogle Scholar
2. Wang, Z.L.Petroski, J.M.Green, T.C. and El-Sayed, M.A., J. Phys. Chem. B102 (32) (1998) p.6145.CrossRefGoogle Scholar
3. Wautelet, M.Phys. Lett. A246 (1998) p. 341.CrossRefGoogle Scholar
4. Muller, R. and Peters, K.Inter. J. Pharm. 160 (1998) p.229.CrossRefGoogle Scholar
5. Zhang, Z.Shi, H.X. and Jiang, Q.Mater. Lett. 44 (2000) p.261.CrossRefGoogle Scholar
6. Allen, T.M. and Cullis, P.R.Science 303 (2004) p.1818.CrossRefGoogle Scholar
7. Vasir, J.K.Reddy, M.K. and Labhaset-war, V.D., Curr. Nanosci. 1 (2005) p.47.CrossRefGoogle Scholar
8. Davda, J. and Labhasetwar, V.Int. J. Pharm. 233 (2002) p.51.CrossRefGoogle Scholar
9. Nel, A.Xia, T.Madler, L. and Li, M.Science 311 (2006) p.622.Google Scholar
10. Israelachvili, J.Intermolecular & Surface Forces, 2nd ed. (Academic Press, San Diego, 1992).Google Scholar
11. Keck, C.M. and Muller, R.H.Euro. J. Pharm. Biopharm. 62 (2006) p.3.Google Scholar
12. Liversidge, G.G. and Cundy, K.C.Int. J.Pharm. 125 (1995) p.91.CrossRefGoogle Scholar
13. Merisko-Liversidge, E., Liversidge, G.G. and Cooper, E.R.Euro. J. Pharm. Sci. 18 (2003) p.113.Google Scholar
14. Shah, U.Vemavarapu, C.Askins, V.Lo-daya, M., Elzinga, P.Matthew, J. and Mollan, J.Pharm. Technol. 30 (3) (2006) p.96.Google Scholar
15. Shah, U.Vemavarapu, C.Galli, C.C.Lodaya, M.P.Mollan, M.J. Jr, and Polak, W.M. “Preparation of Pharmaceutical Compositions Containing Nanoparticles,” Patent No. WO2006003504 (January 12, 2006).Google Scholar
16. Brust, M.Walker, M.Bethell, D.Schiffrin, D.J. and Whyman, R.Chem. Commun. (1994) p.801.Google Scholar
17. Murray, C.B.Norris, D.J. and Bawendi, M.G.J.Am. Chem. Soc. 115 (1993) p.8706.CrossRefGoogle Scholar
18. Bilati, U.Allémann, E., and Doelker, E.Euro. J.Pharm. Biopharm. 24 (1) (2005) p.67.Google Scholar
19. Jiang, B.Hu, L.Gao, C. and Shen, J.Int. J.Pharm. 304 (2005) p.220.Google Scholar
20. Tom, J.W. and Debenedetti, P.G.J. Aerosol Sci. 22 (1991) p.555.CrossRefGoogle Scholar
21. Shah, P.S.Husain, S.Johnston, K.P. and Korgel, B.A.J.Phys. Chem. B106 (2002) p.12178.Google Scholar
22. Holmes, J.D.Bhargava, P.A.Korgel, B.A. and Johnston, K.P.Langmuir 15 (20) (1999) p.6613.Google Scholar
23. Sun, Y.P.Atorngitjawat, P. and Meziani, M.J.Langmuir 17 (2001) p.5707.CrossRefGoogle Scholar
24. Shah, P.S.Hanrath, T.Johnston, K.P. and Korgel, B.A.J. Phys. Chem. B108 (28) (2004) p.9574.CrossRefGoogle Scholar
25. Vemavarapu, C.Mollan, M.J.Lodaya, M. and Needhamb, T.E.Int. J.Pharm. 292 (2005) p.1.Google Scholar
26. Pathak, P.Meziani, M.J.Desai, T. and Sun, Y.P.J.Am. Chem. Soc. 126 (2004) p.10842.Google Scholar
27. Thakur, R. and Gupta, R.B.Int. J.Pharm. 308 (2006) p.190.CrossRefGoogle Scholar
28. Young, T.J.Mawson, S.Johnston, K.P.Henriksen, I.B.Pace, G.W. and Mishra, A.K.Biotech-nol. Progr. 16 (2000) p.402.Google Scholar
29. Bustami, R.T.Chan, H.K.Dehghani, F. and Foster, N.R.Pharm. Res. 17 (2000) p.1360.Google Scholar
30. Chattopadhyay, P. and Gupta, R.B.AIChE J. 48 (2002) p.235.Google Scholar
31. Reverchon, E. and Porta, G.D.Powder Tech-nol. 106 (1999) p.23.CrossRefGoogle Scholar
32. Jones, M.C. and Leroux, J.C.Euro. J. Pharm. Biopharm. 48 (1999) p.101.CrossRefGoogle Scholar
33. Chattopadhyay, P.Huff, R. and Shekunov, B.Y.J.Pharm. Sci. 95 (2006) p.667.CrossRefGoogle Scholar
34. Pileni, M.P.Langmuir 13 (1997) p.3266.CrossRefGoogle Scholar