Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-20T17:32:31.488Z Has data issue: false hasContentIssue false

The Unique Electronic Properties of the Silver Halides

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The modern photographic emulsion is an extremely sensitive detector of light quanta. In fact, high speed black-and-white film (which consists mainly of microcrystalline grains of AgBr or AgBrI suspended in gelatin on an inert base) ranks with the photomultiplier tube as capable of detecting a very few individual light quanta. Exposure times can vary from minute fractions of a second to hours. Unlike the multiplier tube, the photographic emulsion also responds well to relatively high light flux, that is, film can have wide exposure latitude. In many respects such as sensitivity, latitude, resolution, etc., film sets the pace as new multiplier tubes and charge-coupled devices are developed.

Of course, the high sensitivity of film comes about because light absorbed within an emulsion grain causes a latent image to be formed (usually on the surface), which then renders the entire grain developable. The tabular grains of a modern high speed emulsion are largely triangular or hexagonal single-crystal platelets approximately 10 ü across and 0.1 ü thick. Such a grain will contain about 109 silver atoms, and it can be sensitized by a few molecules of gold sulfide or other additives adsorbed on its surface.

In the concentration speck theory of the latent image, light is absorbed throughout the grain, but this energy is transported by the motion of electrons to a sensitivity center usually on the surface where the latent image is formed.

Type
Silver Halides in Photography
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hamilton, J.F., Adv. in Physics (to be published, 1989).Google Scholar
2.Sheppard, S.E., Trivelli, A.H., and Loveland, R.R, J. Franklin Inst. 200 (1925) p. 51.CrossRefGoogle Scholar
3.Mees, C.E.K. and James, T.H., Theory of the Photographic Process, 3rd ed. (Macmillan, New York, 1966).Google Scholar
4.Brown, F.C., in Treatise on Solid State Chemistry, Vol. 4, edited by Hannay, N.B. (1976) p. 333.CrossRefGoogle Scholar
5.der Osten, W. von, Landolt-Börnstein, , New Series III 17b, edited by Madelung, O. (Springer, Berlin, 1982) p. 286.Google Scholar
6.Seitz, F., Mod. Phys. 23 (1951) p. 328.CrossRefGoogle Scholar
7.Overhof, H., see der Osten, W. von, Reference 5, p. 515.Google Scholar
8.Carrera, N.J. and Brown, F.C., Phys. Rev. B 4 (1971) p. 3651.CrossRefGoogle Scholar
9.Joesten, B.L. and Brown, F.C., Phys. Rev. 148 (1966) p. 919.CrossRefGoogle Scholar
10.Weber, J. and der Osten, W. von, Z. Physik. B 24 (1976) p. 343.CrossRefGoogle Scholar
11.Brown, F.C., Masumi, T., and Tippins, H.H., J. Phys. Chem. Solids 22 (1961) p. 101.CrossRefGoogle Scholar
12.McLean, T.P., in Progress in Semiconductors, Vol. 5, edited by Gibson, A.F. and Burgess, R.E. (Heywood, London, 1960).Google Scholar
13.Cho, K. and Toyozawa, Y., J. Phys. Soc. Japan 30 (1971) p. 1555; H. Sumi and Y. Toyozawa, J. Phys. Soc. Japan 31 (1971) p. 342.CrossRefGoogle Scholar
14.Brown, F.C., in Point Defects in Solids, Vol. 1, edited by Crawford, J.H. and Slifkin, L. (Plenum Press, 1972) Chapter 6, p. 491.CrossRefGoogle Scholar
15.Masumi, T., in Polarons and Excitons in Polar Semiconductors and Ionic Crystals, edited by DeVreese, J.T. and Peters, F. (Plenum, New York, 1984).Google Scholar
16.Tippins, H.H. and Brown, F.C., Phys. Rev. 129 (1963) p. 2554.CrossRefGoogle Scholar
17.Ascarelli, G. and Brown, F.C., Phys. Rev. Lett. 9 (1962) p. 209.CrossRefGoogle Scholar
18.Tamura, H. and Masumi, T., J. Phys. Soc. Japan 30 (1971) p. 1763; Solid State Comm. 12 (1971) p. 1183.CrossRefGoogle Scholar
19.Komiyama, S., Masumi, T., and Kajita, K., Phys. Rev. B 20 (1979) p. 5192.CrossRefGoogle Scholar
20.Hodley, J.W., Crowder, J.G., and Bradley, C.C., J. Phys. C: Solid State Phys. 7 (1974) p. 3033.Google Scholar
21.Ascarelli, G. and Baxter, J.E., Solid State Comm. 10 (1972) p. 315.CrossRefGoogle Scholar
22.der Osten, W. von, in Polarons and Excitons and in Polar Semiconductors and Ionic Crystals, edited by DeVreese, J.T. and Peters, F. (Plenum, New York, 1984).Google Scholar
23.Van Heyningen, R.S. and Brown, F.C., Phys. Rev. 111 (1958) p. 462.CrossRefGoogle Scholar
24.Polarons and Excitons, edited by Kuper, C.G. and Whitfield, G. (Oliver and Boyd, Edinburgh, 1963).CrossRefGoogle Scholar
25.Frohlich, H., Advan. Phys. 3 (1954) p. 325.CrossRefGoogle Scholar
26.Harper, P.G., Hodley, J.W., and Stradling, R.A., Rep. Prog. Phys. 36 (1973) p. 1.CrossRefGoogle Scholar
27.Larsen, D.M., Phys. Rev. 174 (1968) p. 1046.CrossRefGoogle Scholar
28.Litton, C.W., Beitton, K.J., Waldman, J., Cohn, D.R., and Lax, B., Phys. Rev. B 13 (1976) p. 5392.CrossRefGoogle Scholar
29.Hodley, J.W., Crowder, J.G., and Bradley, C.C., J. Phys. C 7 (1974) p. 3033; J. W. Hodley, G.P. Russell, F. M. Peeters, J.T. DeVreese, and D. M. Larsen, Phys. Rev. Lett. 58 (1987) p. 1471.Google Scholar
30.Brown, F.C., “Polarons Large and Small,” in Recent Developments in Condensed Matter Physics, edited by DeVreese, J.T. (Plenum, New York, 1981).Google Scholar
31.Low, F. and Pines, D., Phys. Rev. 98 (1958) p. 414.CrossRefGoogle Scholar
32.Thornber, K.K. and Feynman, R.P., Phys. Rev. B 1 (1970) p. 4099.CrossRefGoogle Scholar
33.Kartheuser, K., DeVreese, J., and Evrard, R., Phys. Rev. B 19 (1979) p. 546.CrossRefGoogle Scholar
34.Wei, J.S. and Brown, F.C., J. Photo. Sci. and Eng. 17 (1973) p. 197.Google Scholar
35.Komiyama, S., Masumi, T., and Kajita, K., Phys. Rev. B 12 (1979) p. 5192; T. Masumi, H. Minami, and H. Shimada, J. Phys. Soc. Japan 57 (1988) p. 2674.CrossRefGoogle Scholar
36.Brandt, R. and Brown, F.C., Phys. Rev. 181 (1969) p. 1241.CrossRefGoogle Scholar
37.Hanson, R.C., J. Phys. Chem. 66 (1962) p. 2376.CrossRefGoogle Scholar
38.Kabler, M.N., in Point Defects in Solids, edited by Crawford, J. and Slifkin, L. (Plenum, New York, 1973).Google Scholar
39.Williams, R.T., Semiconductors and Insulators 3 (1978) p. 251.Google Scholar
40.Stoneham, A.M., Adv. in Physics 28 (1979) p. 457.CrossRefGoogle Scholar
41.Sakuragi, S. and Kanzaki, H., Phys. Rev. Lett. 38 (1977) p. 1302.CrossRefGoogle Scholar
42.Hayes, W., Owen, I.B., and Walker, P.J., J. Phys. C: Solid State Phys. 10 (1977) p. 1751.CrossRefGoogle Scholar
43.Toyozawa, Y. and Sumi, A., in 12th Intl. Conf. on Physics of Semiconductors (B.G. Teubner, Stuttgart, 1974) p. 179.Google Scholar
44.Slifkin, L.M., Phys. Bull. 39 (1988) p. 274.CrossRefGoogle Scholar
45.Tan, Y., Lam, W., and Reed, K., J. Appl. Phys. 53 (1982) p. 4289.CrossRefGoogle Scholar
46.Hudson, R.A., Farlow, G.C., and Slifkin, L.M., Phys. Rev. B 36 (1987) p. 4651.CrossRefGoogle Scholar
47.Hamilton, J.F. and Brady, L.E., Surface Science 23 (1970) p. 389.CrossRefGoogle Scholar
48.Kwawer, N., Miller, T.J., Mason, M.G., Tan, Y., Brown, F.C., and Ma, Y., Phys. Rev. B 39 (1989) p. 1471.CrossRefGoogle Scholar
49.Lushington, K.J. and Tan, Y.T, Proc. Intl. East-West Symp. II, Hawaii (Soc. for Imag. Sci., 1988).Google Scholar