Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T19:18:11.403Z Has data issue: false hasContentIssue false

Toward next-generation bioinks: Tuning material properties pre- and post-printing to optimize cell viability

Published online by Cambridge University Press:  10 August 2017

Alexandra L. Rutz
Affiliation:
École des Mines de Saint-Étienne, France; [email protected]
Phillip L. Lewis
Affiliation:
Simpson Querrey Institute, Northwestern University, USA; [email protected]
Ramille N. Shah
Affiliation:
Department of Materials Science and Engineering, and Department of Surgery, Northwestern University, USA; [email protected]
Get access

Abstract

Bioprinting, the three-dimensional (3D) printing of cell-laden inks, will be a truly revolutionary technology for the biomaterials community. The number of bioink studies, especially aimed at functional tissues, remains significantly limited, and furthermore, current bioinks are limited by a narrow window of printability. This can be largely attributed to the fact that the preparation of bioinks and their 3D printing is significantly complicated by the presence of cells, which require strict conditions for their viability. This article discusses how cells should be considered during bioink synthesis, 3D printing, and post-printing processing. We also discuss what has been reported thus far with regard to the relationships between bioink material properties and cells. This underlines the need for next-generation bioinks that simultaneously achieve excellent printability, high cell viability, and a wide range of material properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Malda, J., Visser, J., Melchels, F.P., Jüngst, T., Hennink, W.E., Dhert, W.J.A., Groll, J., Hutmacher, D.W., Adv. Mater. 25, 5011 (2013).Google Scholar
Rutz, A.L., Hyland, K.E., Jakus, A.E., Burghardt, W.R., Shah, R.N., Adv. Mater. 27, 1607 (2015).CrossRefGoogle Scholar
Dubbin, K., Hori, Y., Lewis, K.K., Heilshorn, S.C., Adv. Healthc. Mater. 5, 2488 (2016).CrossRefGoogle Scholar
Schuurman, W., Khristov, V., Pot, M.W., van Weeren, P.R., Dhert, W.J., Malda, J., Biofabrication 3, 21001 (2011).CrossRefGoogle Scholar
Shim, J.-H., Kim, J.Y., Park, M., Park, J., Cho, D.-W., Biofabrication 3, 34102 (2011).CrossRefGoogle Scholar
Pati, F., Jang, J., Ha, D., Won Kim, S., Rhie, J., Shim, J., Kim, D., Cho, D., Nat. Commun. 5, 3935 (2014).CrossRefGoogle Scholar
Bertassoni, L.E., Cecconi, M., Manoharan, V., Nikkhah, M., Hjortnaes, J., Cristino, A.L., Barabaschi, G., Demarchi, D., Dokmeci, M.R., Yang, Y., Khademhosseini, A., Lab Chip 14, 2202 (2014).Google Scholar
Kolesky, D.B., Truby, R.L., Gladman, S., Busbee, T., Homan, K., Lewis, J., Adv. Mater. 26, 3124 (2014).CrossRefGoogle Scholar
Miller, J.S., Stevens, K.R., Yang, M.T., Baker, B.M., Nguyen, D.-H.T., Cohen, D.M., Toro, E., Chen, A., Galie, P., Yu, X., Chaturvedi, R., Bhatia, S.N., Chen, C.S.., Nat. Mater. 11, 768 (2012).Google Scholar
Tamayol, A., Najafabadi, A.H., Aliakbarian, B., Arab-Tehrany, E., Akbari, M., Annabi, N., Juncker, D., Khademhosseini, A., Adv. Healthc. Mater. 4, 2146 (2015).Google Scholar
Armstrong, J.P.K., Burke, M., Carter, B.M., Davis, S.A., Perriman, A.W., Adv. Healthc. Mater. 5, 1724 (2016).CrossRefGoogle Scholar
Onoe, H., Okitsu, T., Itou, A., Kato-Negishi, M., Gojo, R., Kiriya, D., Sato, K., Miura, S., Iwanaga, S., Kuribayashi-Shigetomi, K., Matsunaga, Y.T., Shimoyama, Y., Takeuchi, S., Nat. Mater. 12, 584 (2013).CrossRefGoogle Scholar
Akkouch, A., Yu, Y., Ozbolat, I.T., Biofabrication 7, 31002 (2015).Google Scholar
Colosi, C., Shin, S.R., Manoharan, V., Massa, S., Costantini, M., Barbetta, A., Dokmeci, M.R., Dentini, M., Khademhosseini, A., Adv. Mater. 28, 677 (2016).Google Scholar
Wu, W., DeConinck, A., Lewis, J.A., Adv. Mater. 23, H178 (2011).Google Scholar
Hinton, T.J., Jallerat, Q., Palchesko, R.N., Park, J.H., Grodzicki, M.S., Shue, H.-J., Ramadan, M.H., Hudson, A.R., Feinberg, A.W., Sci. Adv. 1, e1500758 (2015).Google Scholar
Highley, C.B., Rodell, C.B., Burdick, J.A., Adv. Mater. 27, 5075 (2015).CrossRefGoogle Scholar
Peppas, N.A., Khademhosseini, A., Nature 540, 335 (2016).CrossRefGoogle Scholar
Li, Y.-C., Zhang, Y.S., Akpek, A., Shin, S.R., Khademhosseini, A., Biofabrication 9, 12001 (2016).Google Scholar
Shoichet, M.S., Li, R.H., White, M.L., Winn, S.R., Biotechnol. Bioeng. 50, 374 (1996).3.0.CO;2-I>CrossRefGoogle Scholar
Shikanov, A., Zhang, Z., Xu, M., Smith, R.M., Rajan, A., Woodruff, T.K., Shea, L.D., Tissue Eng. Part A 17, 3095 (2011).CrossRefGoogle Scholar
Phelps, E.A., Enemchukwu, N.O., Fiore, V.F., Sy, J.C., Murthy, N., Sulchek, T., Barker, T.H., García, A.J., Adv. Mater. 24, 64 (2012).CrossRefGoogle Scholar
Nair, D.P., Podgórski, M., Chatani, S., Gong, T., Xi, W., Fenoli, C.R., Bowman, C.N., Chem. Mater. 26, 724 (2014).Google Scholar
Lutolf, M.P., Hubbell, J.A., Biomacromolecules 4, 713 (2003).Google Scholar
Lutolf, M.P., Raeber, G.P., Zisch, A.H., Tirelli, N., Hubbell, J.A., Adv. Mater. 15, 888 (2003).CrossRefGoogle Scholar
Jin, R., Teixeira, L.S.M., Krouwels, A., Dijkstra, P.J., van Blitterswijk, C.A., Karperien, M., Feijen, J., Acta Biomater. 6, 1968 (2010).CrossRefGoogle Scholar
Madl, C.M., Katz, L.M., Heilshorn, S.C., Adv. Funct. Mater. 26, 3612 (2016).Google Scholar
Koshy, S.T., Desai, R.M., Joly, P., Li, J., Bagrodia, R.K., Lewin, S.A., Joshi, N.S., Mooney, D.J., Adv. Healthc. Mater. 5, 541 (2016).Google Scholar
DeForest, C.A., Anseth, K.S., Nat. Chem. 3, 925 (2011).CrossRefGoogle Scholar
DeForest, C.A., Polizzotti, B.D., Anseth, K.S., Nat. Mater. 8, 659 (2009).Google Scholar
Desai, R.M., Koshy, S.T., Hilderbrand, S.A., Mooney, D.J., Joshi, N.S., Biomaterials 50, 30 (2015).Google Scholar
Alge, D.L., Azagarsamy, M.A., Donohue, D.F., Anseth, K.S., Biomacromolecules 14, 949 (2013).Google Scholar
Heck, T., Faccio, G., Richter, M., Thöny-Meyer, L., Appl. Microbiol. Biotechnol. 97, 461 (2013).CrossRefGoogle Scholar
Chen, Y.-S., Chang, J.-Y., Cheng, C.-Y., Tsai, F.-J., Yao, C.-H., Liu, B.-S., Biomaterials 26, 3911 (2005).Google Scholar
Macaya, D., Ng, K.K., Spector, M., Adv. Funct. Mater. 21, 4788 (2011).Google Scholar
Schense, J.C., Hubbell, J.A., Bioconjug. Chem. 10, 75 (1999).Google Scholar
Homan, K.A., Kolesky, D.B., Skylar-Scott, M.A., Herrmann, J., Obuobi, H., Moisan, A., Lewis, J.A., Sci. Rep. 6, 34845 (2016).Google Scholar
Wang, H., Heilshorn, S.C., Adv. Mater. 27, 3717 (2015).Google Scholar
Burdick, J.A., Murphy, W.L., Nat. Commun. 3, 1269 (2012).Google Scholar
Foster, A.A., Marquardt, L.M., Heilshorn, S.C., Curr. Opin. Chem. Eng. 15, 15 (2017).Google Scholar
Ouyang, L., Highley, C.B., Rodell, C.B., Sun, W., Burdick, J.A., ACS Biomater. Sci. Eng. 2, 1743 (2016).CrossRefGoogle Scholar
Nair, K., Gandhi, M., Khalil, S., Yan, K.C., Marcolongo, M., Barbee, K., Sun, W., Biotechnol. J. 4, 1168 (2009).CrossRefGoogle Scholar
Chang, R., Nam, J., Sun, W., Tissue Eng. Part A 14, 41 (2008).Google Scholar
Fedorovich, N.E., Schuurman, W., Wijnberg, H.M., Prins, H.-J., van Weeren, P.R., Malda, J., Alblas, J., Dhert, W.J.A., Tissue Eng. Part C Methods 18, 33 (2012).Google Scholar
Billiet, T., Gevaert, E., De Schryver, T., Cornelissen, M., Dubruel, P., Biomaterials 35, 49 (2014).Google Scholar
Khalil, S., Sun, W., Mater. Sci. Eng. C 27, 469 (2007).Google Scholar
Aubin, H., Nichol, J.W., Hutson, C.B., Bae, H., Sieminski, A.L., Cropek, D.M., Akhyari, P., Khademhosseini, A., Biomaterials 31, 6941 (2010).Google Scholar
Baranski, J.D., Chaturvedi, R.R., Stevens, K.R., Eyckmans, J., Carvalho, B., Solorzano, R.D., Yang, M.T., Miller, J.S., Bhatia, S.N., Chen, C.S., Proc. Natl. Acad. Sci. U.S.A. 110, 7586 (2013).Google Scholar
Choi, Y.-J., Kim, T.G., Jeong, J., Yi, H.-G., Park, J.W., Hwang, W., Cho, D.-W., Adv. Healthc. Mater. 5, 2636 (2016).CrossRefGoogle Scholar
Kang, H.-W., Lee, S.J., Ko, I.K., Kengla, C., Yoo, J.J., Atala, A., Nat. Biotechnol. 34, 312 (2016).Google Scholar
Kesti, M., Müller, M., Becher, J., Schnabelrauch, M., D’Este, M., Eglin, D., Zenobi-Wong, M., Acta Biomater. 11, 162 (2015).Google Scholar
Zhao, Y., Li, Y., Mao, S., Sun, W., Yao, R., Biofabrication 7, 45002 (2015).CrossRefGoogle Scholar
Vogel, V., Sheetz, M., Nat. Rev. Mol. Cell Biol. 7, 265 (2006).Google Scholar
Discher, D.E., Mooney, D.J., Zandstra, P.W., Science 324, 1673 (2009).Google Scholar
Aguado, B.A., Mulyasasmita, W., Su, J., Lampe, K.J., Heilshorn, S.C., Tissue Eng. Part A 18, 806 (2012).Google Scholar
Cai, L., Dewi, R.E., Goldstone, A.B., Cohen, J.E., Steele, A.N., Woo, Y.J., Heilshorn, S.C., Adv. Healthc. Mater. 5, 2758 (2016).Google Scholar
Cai, L., Dewi, R.E., Heilshorn, S.C., Adv. Funct. Mater. 25, 1344 (2015).CrossRefGoogle Scholar
Kolesky, D.B., Homan, K.A., Skylar-Scott, M.A., Lewis, J.A., Proc. Natl. Acad. Sci. U.S.A. 113, 3179 (2016).Google Scholar
Zhang, Y.S., Davoudi, F., Walch, P., Manbachi, A., Luo, X., Dell’Erba, V., Miri, A.K., Albadawi, H., Arneri, A., Li, X., Wang, X., Dokmeci, M.R., Khademhosseini, A., Oklu, R., Lab Chip 16, 4097 (2016).Google Scholar
Fedorovich, N.E., Oudshoorn, M.H., van Geemen, D., Hennink, W.E., Alblas, J., Dhert, W.J., Biomaterials 30, 344 (2009).Google Scholar
Jia, W., Gungor-Ozkerim, P.S., Zhang, Y.S., Yue, K., Zhu, K., Liu, W., Pi, Q., Byambaa, B., Dokmeci, M.R., Shin, S.R., Khademhosseini, A., Biomaterials 106, 58 (2016).Google Scholar
Chen, Y.-C., Lin, R.-Z., Qi, H., Yang, Y., Bae, H., Melero-Martin, J.M., Khademhosseini, A., Adv. Funct. Mater. 22, 2027 (2012).Google Scholar
Billiet, T., Van Gasse, B., Gevaert, E., Cornelissen, M., Martins, J.C., Dubruel, P., Macromol. Biosci. 13, 1531 (2013).Google Scholar
Nichol, J.W., Koshy, S.T., Bae, H., Hwang, C.M., Yamanlar, S., Khademhosseini, A., Biomaterials 31, 5536 (2010).Google Scholar