Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T14:58:46.419Z Has data issue: false hasContentIssue false

Three-Dimensional X-Ray Structural Microscopy Using Polychromatic Microbeams

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

In this article, the authors describe the principle and application of differential-aperture x-ray microscopy (DAXM). This recently developed scanning x-ray microprobe technique uses a confocal or traveling pinhole camera approach to determine the crystal structure, crystallographic orientation, and elastic and plastic strain tensors within bulk materials. The penetrating properties of x-rays make the technique applicable to optically opaque as well as transparent materials, and it is nondestructive; this provides for in situ, submicrometer-resolution characterization of local crystal structure and for measurements of microstructure evolution on mesoscopic length scales from tenths to hundreds of micrometers. Examples are presented that illustrate the use of DAXM to study grain and subgrain morphology, grain-boundary types and networks, and local intra- and intergranular elastic and plastic deformation. Information of this type now provides a direct link between the actual structure and evolution in materials and increasingly powerful computer simulations and multiscale modeling of materials microstructure and evolution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Demirel, M., Kuprat, A.P., George, D.C., and Rollett, A.D., Phys. Rev. Lett. 90 016106 (2003).CrossRefGoogle Scholar
2Devincre, B., Kubin, L.P., Lemarchand, C., and Madec, R., Mater. Sci. Eng., A A309 (2001) p. 211.Google Scholar
3Dawson, P.R., Int. J. Sol. Struct. 37 (2000) p. 115.Google Scholar
4Needleman, A., Acta Mater. 48 (2000) p. 105.Google Scholar
5El-Azab, A., Phys. Rev. B 61 11956 (2000).CrossRefGoogle Scholar
6Hansen, N., Metall. Mater. Trans. A 32A (2001) p. 2917.Google Scholar
7Hughes, D.A. and Hansen, N., Acta Mater. 45 (1997) p. 3871.Google Scholar
8Humphreys, F.J., J. Mater. Sci. 36 (2001) p. 3833.Google Scholar
9Schwartz, A.J., Kumar, M., and Adams, B.L., Diffraction in Materials Science (Kluwer Academic/Plenum, New York, 2000).Google Scholar
10Poulsen, H.F., Margulies, L., Schmidt, S., and Winther, G., Acta Mat. 51 (2003) p. 3821.Google Scholar
11Margulies, L., Winther, G., and Poulsen, H.F., Science 291 (2001) p. 2392.CrossRefGoogle Scholar
12Miao, J., Ishikawa, T., Johnson, B., Anderson, E.H., Lai, B., and Hodgson, K.O., Phys. Rev. Lett. 89 088303 (2002).Google Scholar
13Williams, G.J., Pfeifer, M.A., Vartanyants, I.A., and Robinson, I.K., Phys. Rev. Lett. 90 175501 (2003).Google Scholar
14Larson, B.C., Yang, W., Ice, G.E., Budai, J.D., and Tischler, J.Z., Nature 415 (2002) p. 887.CrossRefGoogle Scholar
15Ice, G.E. and Larson, B.C., Adv. Eng. Mater. 2 (2000) p. 643.Google Scholar
16Chung, J.-S. and Ice, G.E., J. Appl. Phys. 86 (1999) p. 5249.CrossRefGoogle Scholar
17Ice, G.E., Chung, J.-S., Tischler, J.Z., Lunt, A., and Assoufid, L., Rev. Sci. Instrum. 71 (2000) p. 2635.Google Scholar
18Liu, C., Conley, R., Assoufid, L., Macrander, A.T., Ice, G.E., Tischler, J.Z., and Zhang, K., J. Vac. Sci. Technol., A 21 (2003) p. 1579.Google Scholar
19Yamauchi, K., Yamamura, K., Mimura, H., Sano, Y., Saito, A., Souvorov, A., Yabashi, M., Tamasaku, K., Ishikawa, T., and Mori, Y., J. Synch. Rad. 9 (2002) p. 313.CrossRefGoogle Scholar
20Hignette, O., Cloetens, P., Lee, W.K., Ludwig, W., and Rostaing, G., J. Phys. IV (France) 104 (2003) p. 231; O. Hignette (private communication).CrossRefGoogle Scholar
21Ice, G.E., Chung, J.-S., Lowe, W., Williams, E., and Edelman, J., Rev. Sci. Instrum. 71 (2000) p. 2001.CrossRefGoogle Scholar
22Cargill, G.S., Nature 415 (2002) p. 844.CrossRefGoogle Scholar
23Yang, W., Larson, B.C., Tischler, J.Z., Ice, G.E., Budai, J.D., and Liu, W., Micron (2004) in press.Google Scholar
24Yang, W., Larson, B.C., Ice, G.E., Tischler, J.Z., Budai, J.D., Chung, K.-S., and Lowe, W.P., Appl. Phys. Lett. 82 (2003) p. 3856.Google Scholar
25Barabash, R.I., Ice, G.E., Larson, B.C., Pharr, G.M., Chung, K.-S., and Yang, W., Appl. Phys. Lett. 79 (2001) p. 749.CrossRefGoogle Scholar
26Larson, B.C., Yang, W., Tischler, J.Z., Budai, J.D., Liu, W., and Weiland, H., Int. J. Plasticity 20 (2004) p. 543.CrossRefGoogle Scholar
27Yang, W., Larson, B.C., Pharr, G.M., Ice, G.E., Budai, J.D., Tischler, J.Z., and Liu, W., J. Mater. Res. 19 (2004) p. 66.CrossRefGoogle Scholar
28Yang, W., Larson, B.C., Pharr, G.M., Ice, G.E., Tischler, J.Z., Budai, J.D., and Liu, W., in Multiscale Phenomena in Materials–Experiments and Modeling Related to Mechanical Behavior, edited by Hemker, K.J., Lassila, D.H., Levine, L.E., and Zbib, H.M. (Mater. Res. Soc. Symp. Proc. 779, Warrendale, PA, 2003) p. W5.34.1.Google Scholar
29Gao, H., Huang, Y., and Nix, W.D., Naturwissenschaften 86 (1999) p. 507.Google Scholar
30Fivel, M.C., Robertson, C.F., Canova, G.R., and Boulanger, L., Acta Mater. 46 (1998) p. 618.CrossRefGoogle Scholar
31Norton, D.P., Goyal, A., Budai, J.D., Christen, D.K., Kroeger, D., Specht, E., He, Q., Saffian, B., Paranthaman, M., Klabunde, C., Lee, D., Sales, B.C., and List, F., Science 274 (1996) p. 755.Google Scholar
32Goyal, A., Norton, D.P., Budai, J.D., Paranthaman, M., Specht, E.D., Kroeger, D.M., Christen, D.K., He, Q., Saffian, B., List, F.A., Lee, D.F., Martin, P.M., Klabunde, C.E., Hartfield, E., and Sikka, V.K., Appl. Phys. Lett. 69 (1996) p. 1795.Google Scholar
33Budai, J.D., Yang, W., Tamura, N., Chung, J.-S., Tischler, J.Z., Larson, B.C., Ice, G.E., Park, C., and Norton, D.P., Nat. Mater. 2 (2003) p. 487.Google Scholar
34Spolenak, R., Brown, W.L., Tamura, N., MacDowell, A.A., Celestre, R.S., Padmore, H.A., Valek, B., Bravman, J.C., Marieb, T., Fujimoto, H., Batterman, B.W., and Patel, J.R., Phys. Rev. Lett. 90 0961021 (2003).Google Scholar
35Tamura, N., MacDowell, A.A., Celestre, R.S., Padmore, H.A., Valek, B., Bravman, J.C., Spolenak, R., Brown, W.L., Marieb, T., Fujimoto, H., Batterman, B.W., and Patel, J.R., Appl. Phys. Lett. 80 (2002) p. 3724.CrossRefGoogle Scholar