Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T00:32:26.592Z Has data issue: false hasContentIssue false

Synthesis and applications of conducting polymer nanofibers

Published online by Cambridge University Press:  10 October 2016

Richard B. Kaner*
Affiliation:
Department of Chemistry and Biochemistry, Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, USA; [email protected].
Get access

Abstract

Conducting polymers are difficult to process, since unlike conventional polymers, they generally do not dissolve in common solvents or melt. By synthesizing nanostructured forms of the conjugated polymer polyaniline, simple methods for making conducting polymer inks become possible. By using either interfacial polymerization or a rapid-mixing technique, nanostructured polyaniline has been synthesized in a readily scalable process. Polyaniline nanofibers make excellent sensors for acids and bases. When decorated with metal nanoparticles, they can be used for molecular memory devices and catalysis. Using a flash from a camera, polyaniline nanofibers can be melted and patterned to make sensors, actuators, and asymmetric membranes. Single crystals of tetraaniline can be grown that exhibit conductivities approaching that of the bulk polymer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kaner, R.B., MacDiarmid, A.G., Sci. Am. 258, 106 (1988).Google Scholar
Wu, C., Bein, T., Science 264, 1757 (1994).Google Scholar
Martin, C.R., Acc. Chem. Res. 28, 61 (1995).Google Scholar
Qiu, H., Wan, M., Macromolecules 34, 675 (2001).CrossRefGoogle Scholar
Norris, I.D., Shaker, M.M., Ko, F.K., MacDiarmid, A.G., Synth. Met. 114, 109 (2000).Google Scholar
Huang, J., Virji, S., Weiller, B.H., Kaner, R.B., J. Am. Chem. Soc. 125, 314 (2003).Google Scholar
Huang, J., Kaner, R.B., J. Am. Chem. Soc. 126, 851 (2004).Google Scholar
Huang, J., Kaner, R.B., Chem. Commun. 4, 367 (2006).Google Scholar
Huang, J., Kaner, R.B., Angew. Chem. Int. Ed. 43, 5817 (2004).Google Scholar
McVerry, B.T., Temple, J.A.T., Huang, X., Marsh, K.L., Hoek, E.M.V., Kaner, R.B., Chem. Mater. 25, 3597 (2013).Google Scholar
Guillen, G.R., Farrell, T.P., Kaner, R.B., Hoek, E.M.V., J. Mater. Chem. 20, 4621 (2010).Google Scholar
Li, D., Kaner, R.B., Chem. Commun. 26, 3286 (2005).Google Scholar
Li, D., Kaner, R.B., J. Mater. Chem. 17, 2279 (2007).Google Scholar
D’Arcy, J.M., Tran, H.D., Tung, V.C., Tucker-Schwartz, A.K., Yang, Y., Kaner, R.B., Proc. Natl. Acad. Sci. U.S.A. 107, 19673 (2010).CrossRefGoogle Scholar
D’Arcy, J.M., Tran, H.D., Stieg, A.Z., Gimzewski, J., Kaner, R.B., Nanoscale 4, 3075 (2012).Google Scholar
Huang, J., Virji, S., Weiller, B., Kaner, R.B., Chem. Eur. J. 10, 1314 (2004).Google Scholar
Virji, S., Huang, J., Kaner, R.B., Weiller, B.H., Nano Lett. 4, 591 (2004).Google Scholar
Virji, S., Weiller, B.H., Huang, J., Blair, R., Shepherd, H., Faltens, T., Haussmann, P.C., Kaner, R.B., Tolbert, S.H., J. Chem. Educ. 85, 1102 (2008).Google Scholar
Virji, S., Fowler, J.D., Baker, C.O., Huang, J., Kaner, R.B., Weiller, B.H., Small 1, 624 (2005).CrossRefGoogle Scholar
Virji, S., Kojima, R., Fowler, J.D., Villanueva, J.G., Kaner, R.B., Weiller, B.H., Nano Res. 2, 135 (2009).Google Scholar
Virji, S., Kojima, R., Fowler, J., Kaner, R.B., Weiller, B.H., Chem. Mater. 21, 3056 (2009).Google Scholar
Virji, S., Kaner, R.B., Weiller, B.H., Chem. Mater. 17, 1256 (2005).Google Scholar
Tseng, R.J., Huang, J., Ouyang, J., Kaner, R.B., Yang, Y., Nano Lett. 5, 1077 (2005).Google Scholar
Tseng, R.J., Baker, C.O., Shedd, B., Huang, J., Ouyang, J., Kaner, R.B., Yang, Y., Appl. Phys. Lett. 90, 053101 (2007).Google Scholar
Gallon, B.J., Kojima, R.W., Kaner, R.B., Diaconescu, P.L., Angew. Chem. Int. Ed. 46, 7251 (2007).Google Scholar
Huang, J., Kaner, R.B., Nat. Mater. 3, 783 (2004).Google Scholar
Strong, V., Wang, Y., Patatanyan, A., Whitten, P.G., Spinks, G.M., Wallace, G.G., Kaner, R.B., Nano Lett. 11, 3128 (2011).Google Scholar
Baker, C.O., Shedd, B., Innis, P.C., Whitten, P.G., Spinks, G.M., Wallace, G.G., Kaner, R.B., Adv. Mater. 20, 155 (2008).CrossRefGoogle Scholar
Li, D., Huang, J., Kaner, R.B., Acc. Chem. Res. 42, 135 (2009).Google Scholar
Tran, H.D., Kaner, R.B., Chem. Commun. 37, 3915 (2006).Google Scholar
Tran, H.D., Norris, I., D’Arcy, J.M., Tsang, H., Wang, Y., Mattes, B.R., Kaner, R.B., Macromolecules 41, 7405 (2008).Google Scholar
Wang, Y., Tran, H.D., Kaner, R.B., J. Phys. Chem. C 113, 10346 (2009).Google Scholar
Tran, H.D., Hong, W.G., D’Arcy, J.M., Kojima, R.W., Weiller, B.H., Shin, K., Kaner, R.B., Macromol. Rapid Commun. 28, 2293 (2007).Google Scholar
Wang, Y., Tran, H.D., Liao, L., Duan, X., Kaner, R.B., J. Am. Chem. Soc. 132, 10365 (2010).Google Scholar
Wang, Y., Liu, J., Tran, H.D., Mecklenburg, M., Guan, X.N., Stieg, A.Z., Regan, B.C., Martin, D.C., Kaner, R.B., J. Am. Chem. Soc. 134, 9251 (2012).CrossRefGoogle Scholar
Wang, Q.H., Hersam, M.C., Nat. Chem. 1, 206 (2009).Google Scholar
Wang, Y., Torres, J.A., Stieg, A.Z., Jiang, S., Yeung, M.T., Rubin, Y., Chaudhuri, S., Duan, X., Kaner, R.B., ACS Nano 9, 9486 (2015).Google Scholar
D’Arcy, J.M., El-Kady, M.F., Khine, P.P., Zhang, L., Lee, S.H., Davis, N.R., Liu, D.S., Yeung, M.T., Kim, S.Y., Turner, C.L., Lech, A.T., Hammond, P.T., Kaner, R.B., ACS Nano 8, 1500 (2014).CrossRefGoogle Scholar