Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T04:49:06.097Z Has data issue: false hasContentIssue false

Structural Evaluation and Molecular Control of Vacuum-Evaporated Organic Thin Films

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Recently, organic molecules and their complexes with inorganic or metallic materials have drawn many researchers' interest as candidate materials for nanoscale electronic devices of the next generation, especially since Carter's proposal on molecular electronic devices (MEDs) with the functions of gating, switching, memory, etc. in one molecule. However, in order to build such nanoscopic organic electronic devices to replace conventional silicon-based inorganic devices, one must determine how to produce such nanoscale devices and to recognize the electronic states of a single molecule.

The scanning tunneling microscope (STM) developed by G. Binning and H. Rohrer made it possible to visualize atoms and molecules in real space under various atmospheres. In addition, STMs can be used as nanoscopic tools for manipulation of individual atoms and molecules, thus realizing MEDs and nanotechnology.

In this article, we present our recent achievements concerning the STM as well as in situ x-ray diffraction studies on the molecular structure of ultrathin films prepared by vacuum evaporation. STM observations with atomic resolution reveal the mechanism of nuclei formation and the crystal-growth process in organic molecules. Computer simulations based on STM images of polar organic molecules with electronic dipoles have elucidated the role of electronic interaction for their aggregation structures.

Also, nanometer-sized molecular memory can be created by applying an electronic pulse to the evaporated organic films through the STM tip. Furthermore, we discuss the principle of a newly developed in situ total reflection x-ray diffraction (TRXD) apparatus and its application to the evaluation of crystal structure and molecular orientation in organic thin films during the evaporation process, particularly in regard to the role of the substrate, that is, epitaxial growth on organic molecular crystals.

Type
Organic Thin Films
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Carter, F.L., ed., Molecular Electric Devices (Mercel Dekker, New York, 1982).Google Scholar
2.Binnig, G. and Rohrer, H., Helv. Phys. Acta. 55 (1982) p. 726.Google Scholar
3.Eigler, D.M. and Sweizer, E.K., Nature 344 (1990) p. 525.CrossRefGoogle Scholar
4.McGonigal, G.C., Bernhardt, R.H., and Thomson, D.J., Appl. Phys. Lett. 57 (1990) p. 28.CrossRefGoogle Scholar
5.McGonigal, G.C., Bernhardt, R.H., Yao, Y. H., and Thomson, D.J., J. Vac. Sci. Technol. B9 (1991) p. 1,107.Google Scholar
6.Rabe, J.P. and Buchholz, S., Science 253 (1991) p. 424.CrossRefGoogle Scholar
7.Foster, J.S. and Frommer, J.E., Nature 333 (1988) p. 542.CrossRefGoogle Scholar
8.Smith, D.P.E., Horber, H., Gerber, C., and Binning, G., Science 245 (1989) p. 43.CrossRefGoogle Scholar
9.Hara, M., Sasabe, H., Yamada, A., and Garito, A.F., Jpn. J. Appl Phys. 28 (1989) p. L306.CrossRefGoogle Scholar
10.Hara, M., Iwakabe, Y., Tochigi, K., Sasabe, H., Garito, A.F., and Yamada, A., Nature 344 (1990) p. 228.CrossRefGoogle Scholar
11.Iwakabe, Y., Hara, M., Kondo, K., Tochigi, K., Mukoh, A., Yamada, A., Garito, A.F., and Sasabe, H., Jpn. J. Appl. Phys. 30 (1991) p. 2,542.CrossRefGoogle Scholar
12.Taki, S., Ishida, K., Okabe, H., and Matsushige, K., J. Cryst. Growth 131 (1993) p. 13.CrossRefGoogle Scholar
13.Ishida, K., Taki, S., Okabe, H., and Matsushige, K., Jpn. J. Appl. Phys. in press.Google Scholar
14.Matsushige, K., Taki, S., Okabe, H., Takebayashi, Y., Hayashi, K., Yoshida, Y., Horiuchi, T., Hara, K., Takehara, K., Isomura, K., and Taniguchi, H., Jpn. J. Appl. Phys. 32 (1993) p. 1,716.CrossRefGoogle Scholar
15.Taki, S., Takebayashi, Y., and Matsushige, K., Mol. Cryst. Liq. Cryst. 247 (1994) p. 215.Google Scholar
16.Matsushige, K. and Taki, S., Jpn. J. Appl. Phys. 33 (1994) p. 3,715.CrossRefGoogle Scholar
17.Matsushige, K. and Taki, S., Mol. Cryst. Liq. Cryst. 247 (1994) p. 203.CrossRefGoogle Scholar
18.Horiuchi, T., Fukao, K., and Matsushige, K., Jpn. J. Appl. Phys. 26 (1987) p. L1,839.CrossRefGoogle Scholar
19.Hayashi, K., Ishida, K., Horiuchi, T., and Matsushige, K., Jpn. J. Appl. Phys. Part 1 12 (1992) p. 4,081.Google Scholar
20.Hayashi, K., Horiuchi, T., and Matsushige, K., Rept. Prog. Polym. Phys. Jpn. 37 (1994) p. 295.Google Scholar
21.Ishida, K., Hayashi, K., Horiuchi, T., and Matsushige, K., J. Appl. Phys. 73 (1993) p 7,338.CrossRefGoogle Scholar
22.Mauritz, K.A., Baer, E., and Hopfinger, A.J., J. Polym. Sci. Polym. Phys. Ed. 11 (1973) p. 2,185.CrossRefGoogle Scholar
23.Ishida, K., Horiuchi, T., Kai, S., and Matsushige, K., Jpn. J. Appl. Phys. 34 (1995) p. L240.CrossRefGoogle Scholar