Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T15:34:25.821Z Has data issue: false hasContentIssue false

Strain-mediated magnetoelectric storage, transmission, and processing: Putting the squeeze on data

Published online by Cambridge University Press:  09 November 2018

John Domann
Affiliation:
Department of Biomedical Engineering and Mechanics, Virginia Tech, USA; [email protected]
Tao Wu
Affiliation:
ShanghaiTech University, School of Information Science and Technology, China; [email protected]
Tien-Kan Chung
Affiliation:
Department of Mechanical Engineering, National Chiao Tung University, Taiwan; [email protected]
Greg Carman
Affiliation:
NSF Engineering Research Center, and Department of Surgery, University of California, Los Angeles, USA; [email protected]
Get access

Abstract

Strain-mediated magnetoelectric coupling provides a powerful method for controlling nanoscale magnetism with an electric voltage. This article reviews the initial use of macroscale composites and subsequent experimental control of magnetic thin films, nanoscale heterostructures, and single domains. The discussion highlights several characteristics enabling small, fast, and energy-efficient technologies. The second section covers applications where strain-mediated magnetoelectricity has been used, with emphasis on the storage, transmission, and processing of information (i.e., memory, antenna, and logic devices). These advances are order-of-magnitude improvements over conventional technologies, and open up exciting new possibilities.

Type
Materials for Strain-Mediated Magnetoelectric Systems
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Astrov, D.N., Sov. Phys. JETP 13, 729 (1961).Google Scholar
Dzyaloshinskii, I.E., J. Exp. Theor. Phys. 10, 628 (1960).Google Scholar
Rado, G.T., Folen, V.J., J. Appl. Phys. 33, 1126 (1962).CrossRefGoogle Scholar
Al’shin, B.I., Astrov, D.N., Sov. Phys. JETP 17, 809 (1963).Google Scholar
Rado, G.T., Phys. Rev. Lett. 13, 335 (1964).CrossRefGoogle Scholar
Van Suchtelen, J., Philips Res. Rep. 27, 28 (1972), https://pdfs.semanticscholar.org/f8c3/5201bf5d2d36775729ae5580c8a14163f13f.pdf (accessed July 10, 2018).Google Scholar
Van Den Boomgaard, J., Terrell, D.R., Born, R.A.J., Giller, H.F.J.I., J. Mater. Sci. 9, 1705 (1974).CrossRefGoogle Scholar
Van Den Boomgaard, J., Van Run, A.M.J.G., Van Suchtelen, J., Ferroelectrics 10, 295 (1976).CrossRefGoogle Scholar
Rado, G.T., Ferrari, J.M., Maisch, W.G., Phys. Rev. B Condens. Matter 29, 4041 (1984).CrossRefGoogle Scholar
Ryu, J., Carazo, A.V., Uchino, K., Kim, H.-E., Jpn. J. Appl. Phys. 40, 4948 (2001).CrossRefGoogle Scholar
Jahns, R., Piorra, A., Lage, E., Kirchhof, C., Meyners, D., Gugat, J.L., Krantz, M., Gerken, M., Knöchel, R., Quandt, E., J. Am. Ceram. Soc. 96, 1673 (2013).CrossRefGoogle Scholar
Dong, S., Zhai, J., Li, J., Viehland, D., Appl. Phys. Lett. 89, 252904 (2006).CrossRefGoogle Scholar
Zhai, J., Dong, S., Xing, Z., Li, J., Viehland, D., Appl. Phys. Lett. 89, 83507 (2006).CrossRefGoogle Scholar
Wu, T., Chung, T.-K., Chang, C.-M., Keller, S., Carman, G.P., J. Appl. Phys. 106, 054114 (2009).CrossRefGoogle Scholar
Wu, T., Emmons, M., Chung, T.-K., Sorge, J., Carman, G.P., J. Appl. Phys. 107, 09D912 (2010).CrossRefGoogle Scholar
Wu, T., Bur, A., Zhao, P., Mohanchandra, K.P., Wong, K., Wang, K.L., Lynch, C.S., Carman, G.P., Appl. Phys. Lett. 98, 12504 (2011).Google Scholar
Wu, T., Chang, C.-M., Chung, T.-K., Carman, G., IEEE Trans. Magn. 45, 4333 (2009).Google Scholar
Hockel, J.L., Wu, T., Carman, G.P., J. Appl. Phys. 109, 064106 (2011).CrossRefGoogle Scholar
Chang, C.-M., Carman, G.P., Phys. Rev. B Condens. Matter 76, 134116 (2007).CrossRefGoogle Scholar
Nan, C.W., Bichurin, M.I., Dong, S., Viehland, D., Srinivasan, G., J. Appl. Phys. 103, 31101 (2008).CrossRefGoogle Scholar
Wu, T., Bur, A., Hockel, J.L., Wong, K., Chung, T.-K., Carman, G.P., IEEE Magn. Lett. 2, 6000104 (2011).Google Scholar
Hsu, C.J., Hockel, J.L., Carman, G.P., Appl. Phys. Lett. 100, 092902 (2012).Google Scholar
Chung, T.-K., Carman, G.P., Mohanchandra, K.P., Appl. Phys. Lett. 92, 112509 (2008).CrossRefGoogle Scholar
Chung, T.K., Wang, H.M., Chen, Y.J., Lin, S.H., Chu, H.J., Lin, P.J., Hung, C.F., Appl. Phys. Express 9, 043003 (2016).CrossRefGoogle Scholar
Chung, T.-K., Keller, S., Carman, G.P., Appl. Phys. Lett. 94, 132501 (2009).CrossRefGoogle Scholar
Buzzi, M., Chopdekar, R.V., Hockel, J.L., Bur, A., Wu, T., Pilet, N., Warnicke, P., Carman, G.P., Heyderman, L.J., Nolting, F., Phys. Rev. Lett. 111, 027204 (2013).CrossRefGoogle Scholar
Fashami, M.S., Atulasimha, J., Bandyopadhyay, S., Nanotechnology 23, 105201 (2012).CrossRefGoogle Scholar
Fashami, M.S., Roy, K., Atulasimha, J., Bandyopadhyay, S., Nanotechnology 22, 155201 (2011).CrossRefGoogle Scholar
D’Souza, N., Atulasimha, J., Bandyopadhyay, S., IEEE Trans. Nanotechnol. 11, 418 (2012).CrossRefGoogle Scholar
D’Souza, N., Fashami, M.S., Bandyopadhyay, S., Atulasimha, J., Nano Lett. 16, 1069 (2016).CrossRefGoogle Scholar
Hockel, J.L., Bur, A., Wu, T., Wetzlar, K.P., Carman, G.P., Appl. Phys. Lett. 100, 022401 (2012).CrossRefGoogle Scholar
Sohn, H., Nowakowski, M.E., Liang, C.Y., Hockel, J.L., Wetzlar, K., Keller, S., McLellan, B.M., Marcus, M.A., Doran, A., Young, A., Kläui, M., Carman, G.P., Bokor, J., Candler, R.N., ACS Nano 9, 4814 (2015).CrossRefGoogle Scholar
Chikazumi, S., Physics of Ferromagnetism, 2nd ed. (Oxford University Press, New York, 2009).Google Scholar
Coey, J.M.D., Magnetism and Magnetic Materials (Cambridge University Press, New York, 2010).CrossRefGoogle Scholar
Liang, C.-Y., Keller, S.M., Sepulveda, A.E., Bur, A., Sun, W.-Y., Wetzlar, K., Carman, G.P., Nanotechnology 25, 435701 (2014).CrossRefGoogle Scholar
Liang, C.Y., Keller, S.M., Sepulveda, A.E., Sun, W.Y., Cui, J., Lynch, C.S., Carman, G.P., J. Appl. Phys. 116, 123909 (2014).CrossRefGoogle Scholar
Liang, C.Y., Sepulveda, A.E., Hoff, D., Keller, S.M., Carman, G.P., J. Appl. Phys. 118, 174101 (2015).CrossRefGoogle Scholar
Bur, A., Wu, T., Hockel, J., Hsu, C.-J., Kim, H.K.D., Chung, T.-K., Wong, K., Wang, K.L., Carman, G.P., J. Appl. Phys. 109, 123903 (2011).CrossRefGoogle Scholar
Lo Conte, R., Xiao, Z., Chen, C., Stan, C.V., Gorchon, J., El-Ghazaly, A., Nowakowski, M.E., Sohn, H., Pattabi, A., Scholl, A., Tamura, N., Sepulveda, A., Carman, G.P., Candler, R.N., Bokor, J., Nano Lett. 18, 1952 (2018).CrossRefGoogle Scholar
Wu, T., Zhao, P., Bao, M., Bur, A., Hockel, J.L., Wong, K., Mohanchandra, K.P., Lynch, C.S., Carman, G.P., J. Appl. Phys. 109, 124101 (2011).Google Scholar
Wu, T., Bur, A., Wong, K., Hockel, J.L., Hsu, C.J., Kim, H.K.D., Wang, K.L., Carman, G.P., J. Appl. Phys. 109, 07D732 (2011).CrossRefGoogle Scholar
Wu, T., Bur, A., Wong, K., Zhao, P., Lynch, C.S., Amiri, P.K., Wang, K.L., Carman, G.P., Appl. Phys. Lett. 98, 262504 (2011).Google Scholar
Wu, T., Carman, G.P., J. Appl. Phys. 112, 073915 (2012).CrossRefGoogle Scholar
Bao, M., Zhu, G., Wong, K.L., Hockel, J.L., Lewis, M., Zhao, J., Wu, T., Amiri, P.K., Wang, K.L., Appl. Phys. Lett. 101, 022409 (2012).CrossRefGoogle Scholar
Cherepov, S., Amiri, P.K., Alzate, J.G., Wong, K., Lewis, M., Upadhyaya, P., Nath, J., Bao, M., Bur, A., Wu, T., Carman, G.P., Khitun, A., Wang, K.L., Appl. Phys. Lett. 104, 82403 (2014).CrossRefGoogle Scholar
Cui, J., Hockel, J.L., Nordeen, P.K., Pisani, D.M., Liang, C.Y., Carman, G.P., Lynch, C.S., Appl. Phys. Lett. 103, 232905 (2013).Google Scholar
Cui, J., Liang, C.Y., Paisley, E.A., Sepulveda, A., Ihlefeld, J.F., Carman, G.P., Lynch, C.S., Appl. Phys. Lett. 107, 92903 (2015).CrossRefGoogle Scholar
Sohn, H., Liang, C., Nowakowski, M.E., Hwang, Y., Han, S., Bokor, J., Carman, G.P., Candler, R.N., J. Magn. Magn. Mater. 439, 196 (2017).CrossRefGoogle Scholar
Lambson, B., Carlton, D., Bokor, J., Phys. Rev. Lett. 107, 1 (2011).CrossRefGoogle Scholar
Hong, J., Lambson, B., Dhuey, S., Bokor, J., Sci. Adv. 2, e1501492 (2016).CrossRefGoogle Scholar
Wang, Q., Li, X., Liang, C.Y., Barra, A., Domann, J., Lynch, C., Sepulveda, A., Carman, G., Appl. Phys. Lett. 110, 102903 (2017).CrossRefGoogle Scholar
Wang, Q., Domann, J., Yu, G., Barra, A., Wang, K.L., Carman, G.P., Phys. Rev. Appl., https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.10.034052 (2018).Google Scholar
Chu, Z., Annapureddy, V., PourhosseiniAsl, M., Palneedi, H., Ryu, J., Dong, S., MRS Bull. 43, 199 (2018).CrossRefGoogle Scholar
Mori, T., Priya, S., MRS Bull. 43, 176 (2018).CrossRefGoogle Scholar
Leung, C.M., Or, S.W., Ho, S.L., Lee, K.Y., IEEE Sens. J. 14, 4305 (2014).CrossRefGoogle Scholar
Shehabi, A., Smith, S., Sartor, D., Brown, R., Herrlin, M., Koomey, J., Masanet, E., Horner, N., Azevedo, I., Lintner, W., “United States Data Center Energy Usage Report” (LBNL-1005775, Ernest Orlando Lawrence Berkeley National Laboratory, 2016), https://eta.lbl.gov/sites/all/files/publications/lbnl-1005775_v2.pdf (accessed July 15, 2018).Google Scholar
Domann, J.P., Carman, G.P., J. Appl. Phys. 121, 044905 (2017).CrossRefGoogle Scholar
Yao, Z., Wang, Y.E., Keller, S., Carman, G.P., IEEE Trans. Antennas Propag. 63, 3335 (2015).CrossRefGoogle Scholar
Nan, T., Lin, H., Gao, Y., Matyushov, A., Yu, G., Chen, H., Sun, N., Wei, S., Wang, Z., Li, M., Wang, X., Belkessam, A., Guo, R., Chen, B., Zhou, J., Qian, Z., Hui, Y., Rinaldi, M., McConney, M.E., Howe, B.M., Hu, Z., Jones, J.G., Brown, G.J., Sun, N.X., Nat. Commun. 8, 296 (2017).CrossRefGoogle Scholar
Yao, Z., Wang, Y.E., 2015 IEEE Int. Symp. Antennas Propag. Usn. Natl. Radio Sci. Meet., pp. 18321833.Google Scholar
Yao, Z., Wang, Y.E., “3D Unconditionally Stable FDTD Modeling of Micromagnetics and Electrodynamics,” presented at the 2017 IEEE MTT-S International Microwave Symposium, Honolulu, HI, June 4–9, 2017, pp. 1215.Google Scholar
Keller, S.M., Carman, G.P., J. Intell. Mater. Syst. Struct. 24, 651 (2013).CrossRefGoogle Scholar
Keller, S.M., Sepulveda, A.E., Carman, G.P., Prog. Electromagn. Res. 154, 115 (2015).CrossRefGoogle Scholar
Yang, G., Sun, N.X., “Magnetoelectric Composites for Miniature Antennas,” in Composite Magnetoelectrics, Srinivasan, G., Priya, S., Sun, N.X., Eds. (Woodhead Publishing, Waltham, MA, 2015), pp. 265295.CrossRefGoogle Scholar
Lou, J., Liu, M., Reed, D., Ren, Y., Sun, N.X., Adv. Mater. 21, 4711 (2009).CrossRefGoogle Scholar
Manteghi, M., Ibraheem, A.A.Y., IEEE Trans. Antennas Propag. 62, 6491 (2014).CrossRefGoogle Scholar
Chen, C., Barra, A., Mal, A., Carman, G., Sepulveda, A., Appl. Phys. Lett. 110, 72401 (2017).Google Scholar
Kostylev, M.P., Serga, A.A., Schneider, T., Leven, B., Hillebrands, B., Appl. Phys. Lett. 87, 153501 (2005).CrossRefGoogle Scholar
Schneider, T., Serga, A.A., Leven, B., Hillebrands, B., Stamps, R.L., Kostylev, M.P., Appl. Phys. Lett. 92, 022505 (2008).CrossRefGoogle Scholar
Salehi, S., DeMara, R.F., SoutheastCon 2015 (IEEE, Fort Lauderdate, FL, 2015), pp. 15.Google Scholar
Nikonov, D.E., Young, I.A., IEEE J. Explor. Solid-State Comput. Devices Circuits 1, 3 (2015).CrossRefGoogle Scholar
Domann, J.P., Sun, W.-Y., Schelhas, L.T., Carman, G.P., J. Appl. Phys. 120, 143904 (2016).CrossRefGoogle Scholar
Xue, X., Zhou, Z., Peng, B., Zhu, M., Zhang, Y., Ren, W., Ren, T., Yang, X., Nan, T., Sun, N.X., Liu, M., Sci. Rep. 5, 16480 (2015).CrossRefGoogle Scholar
Barra, A., Domann, J., Kim, K.W., Carman, G., Phys. Rev. Appl. 9, 034017 (2018).CrossRefGoogle Scholar