Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-20T18:13:01.306Z Has data issue: false hasContentIssue false

Spontaneous Lateral Composition Modulation in III-V Semiconductor Alloys

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The application of III-V semiconductor alloys in device structures is of importance for high-speed microelectronics and optoelectronics. These alloys have allowed the device engineer to tailor material parameters such as the bandgap and carrier mobility to the need of the device by altering the alloy composition. When using ternary or quaternary materials, the device designer presumes that the alloy is completely disordered, without any correlation between the atoms on the cation (anion) sublattice. However the thermodynamics of the alloy system often produce material that has some degree of macroscopic or microscopic ordering. Short-range ordering occurs when atoms adopt correlated neighboring positions over distances of the order of a few lattice spacings. This can be manifested as the preferential association of like atoms, as in clustering, or of unlike atoms, as in chemical ordering (e.g., CuPt ordering). Long-range ordering occurs over many tens of lattice spacings, as in the case of phase separation. In either short-range or long-range ordering, the band structure and the crystal symmetry are greatly altered. Therefore it is absolutely critical that the mechanisms be fully understood to prevent ordering when necessary or to exploit it when possible.

Type
Compositional Modulation and Ordering in Semiconductors
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Zunger, A. and Mahajan, S., “Atomic Ordering and Phase Separation in Epitaxial III-V Alloys,” in Handbook of Semiconductors, vol. 3, edited by Moss, T.S. (Elsevier Science B.V., Amsterdam, 1994) p. 1399.Google Scholar
2.Ferguson, I.T., Norman, A.G., Joyce, B.A., Seong, T.R., Booker, G.R., Thomas, R.H., Phillips, C.C., and Stradling, R.A., Appl Phys. Lett. 59 (1991) p. 3324.CrossRefGoogle Scholar
3.Ahrenkiel, S.P., Xin, S.H., Reimer, P.M., Berry, J.J., Luo, H., Short, S., Bode, M., Al-Jassim, M., Buschert, J.R., and Furdyna, J.K., Phys. Rev. Lett. 75 (1995) p. 1586.CrossRefGoogle Scholar
4.Chen, A.C., Moy, A.M., Chou, L.J., Hsieh, K.C., and Cheng, K.Y., Appl. Phys. Lett. 66 (1995) p. 2694.CrossRefGoogle Scholar
5.Chou, S.T., Cheng, K.Y., Chou, L.J., and Hsieh, K.C., J. Appl Phys. 78 (1995) p. 6270.CrossRefGoogle Scholar
6.Chou, S.T., Hsieh, K.C., Cheng, K.Y., and Chou, L.J., J. Vac. Sci. Technol. B 13 (1995) p. 650.CrossRefGoogle Scholar
7.Yoshida, J., Kishino, K., Jang, D.H., Nahm, S., Nomura, I., and Kikuchi, A., Opt. Quantum Electron. 28 (1996) p. 547.CrossRefGoogle Scholar
8.Millunchick, J. Mirecki, Twesten, R.D., Follstaedt, D.M., Lee, S.R., Jones, E.D., Zhang, Y., Ahrenkiel, S.P., and Mascarenhas, A., Appl. Phys. Lett. 10 (1997) p. 1402.CrossRefGoogle Scholar
9.Lee, S.R., Doyle, B.L., Drummond, T.J., Medernach, J.W., and Schneider, R.P. Jr., in Adv. in X-Ray Analysis, edited by Predecki, P.K.et al. (Plenum Press, New York, 1995) p. 201.Google Scholar
10.Cheng, K.Y., Hsieh, K.C., Baillargeon, J.N., and Mascarenhas, A., in Proc. 18th Int. Symp. of GaAs and Related Compounds (Inst. Phys. Conf. Ser. 120, London, 1992) p. 589.Google Scholar
11.Hashizume, T., Xue, Q.K., Zhou, J., Ichimiya, A., and Sakurai, T., Phys. Rev. Lett. 73 (1994) p. 2208.CrossRefGoogle Scholar
12.Shiraishi, K., Appl. Phys. Lett. 60 (1992) p. 1363.CrossRefGoogle Scholar
13.Millunchick, J. Mirecki, Twesten, R.D., Lee, S.R., Follstaedt, D.M., Jones, E.D., Ahrenkiel, S.P., Zhang, Y., Cheong, H.M., and Mascarenhas, A., J. Electron. Mater. in press.Google Scholar
14.Hua, G.C., Otsuka, N., Grillo, D.C., Han, J., He, L., and Gunshor, R.L., J. Cryst. Growth 138 (1994) p. 367.CrossRefGoogle Scholar
15.Tomiya, S., Tsukamoto, H., Itoh, S., Nakano, K., Morita, E., and Ishibashi, A., (Materials Research Society, Pittsburgh, 1996) in press.Google Scholar
16.Glas, F., J. Appl. Phys. 62 (1987) p. 3201.CrossRefGoogle Scholar
17.Cahn, J.W., Acta Metall. 9 (1961) p. 975.Google Scholar
18.Cheng, K.Y., Hsieh, K.C., and Baillargeon, J.N., Appl Phys. Lett. 60 (1992) p. 2892.CrossRefGoogle Scholar
19.Xie, Q., Madhukar, A., Chen, P., and Kobayashi, N.P., Phys. Rev. Lett. 75 (1995) p. 2542.CrossRefGoogle Scholar
20.Asaro, R.J. and Tiller, W.A., Metall Trans. 3 (1972) p. 1789.CrossRefGoogle Scholar
21.Guyer, J.E. and Voorhees, P.W., Phys. Rev. B 54 (1996) p. 11710.CrossRefGoogle Scholar
22.Sridhar, N., Rickman, J.M., and Srolovitz, D.J., Acta Metall. in press.Google Scholar
23.Tersoff, J., Phys. Rev. Lett. 77 (1996) p. 2017.CrossRefGoogle Scholar
24.Ahrenkiel, S.P., Ahrenkiel, R.K., and Arent, D.J. (Materials Research Society, Pittsburgh, 1996) in press.Google Scholar
25.Jones, E.D., Millunchick, J. Mirecki, Follstaedt, D.M., Hafich, M.J., Lee, S.R., Reno, J., Twesten, R.D., Zhang, Y., and Mascarenhas, A., in Proc. SPIE Int. Symp. On Optoelectronics in press.Google Scholar
26.Pearah, P.J., Chen, A.C., Moy, A.M., Hsieh, K.C., and Cheng, K.Y., IEEE J. Quantum Electron. 30 (1994) p. 608.CrossRefGoogle Scholar
27.Moy, A.M., Chen, A.C., Cheng, K.Y., Chou, L.J., Hsieh, K.C., and Tu, C.W., J. Appl. Phys. 80 (1996) p. 7124.CrossRefGoogle Scholar
28.Wohlert, D.E., Chou, S.T., Chen, A.C., Cheng, K.Y., and Hsieh, K.C., Appl. Phys. Lett. 68 (1996) p. 2386.CrossRefGoogle Scholar