Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T08:46:06.187Z Has data issue: false hasContentIssue false

Silica Glasses

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Fifty years ago, who could have imagined that silicon dioxide—the material of ordinary beach sand—would become one of the most important materials of present-day optics and electronics? Yet SiO2 is arguably the most crucial material component in current-generation fiber optics and metal-oxide-semiconductor (MOS) device technology. In MOS field-effect transistors (MOSFETs), SiO2 serves not only as the gate insulator, but also as the “field oxide” (which isolates various components of an integrated circuit) and as the packaging material which seals the device from outside contamination. In these roles silica acts as a “perfect dielectric,” being characterized by an essentially infinite resistivity (actually ~1016 Ohm · m at 300 K). The ability to form such a high quality dielectric film with a near-perfect lattice match on single-crystal silicon continues to favor silicon-based MOS technology over technologies founded on electrically superior GaAs.

In the rapidly developing fiber optic arena, fused silica is still “king” due to a combination of properties, including extremely high transparency over a range of usable wavelengths (Figure 1), low material dispersion (~0 at 1.3/üm), high tensile strength (~ 150 kpsi), and high chemical durability. In addition, bulk forms of silica continue to find application in lenses, prisms, windows, and low-coefficient-of-thermal-expansion reflective optics; thin silica films are common components of the highly reflective and anti-reflective surface coatings which are laid down on reflective and transmissive optics, respectively.

Type
Glasses
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Feigl, F.J., Physics Today 39 (1986) p. 47.CrossRefGoogle Scholar
2.Griscom, D.L., in Glass..Current Issues, edited by Wright, A.F. and Dupuy, J. (Martinus Nijhoff, Dordrecht, 1985) p. 362.CrossRefGoogle Scholar
3.Wright, A.C., Connell, G.A.N., and Allen, J.W., J. Non-Cryst. Solids 42 (1980) p. 69; A.C. Wright, Rep. Prog. Phys. (in preparation).CrossRefGoogle Scholar
4.Zachariasen, W.H., J. Am. Chem. Soc. 54 (1932) p. 3841.CrossRefGoogle Scholar
5.Warren, B.E., Phys. Rev. 45 (1934) p. 657; R.L. Mozzi and B.E. Warren, J. Appl. Crystallogr. 2 (1969) p. 164.CrossRefGoogle Scholar
6.Konnert, J.H., Ferguson, G.A., and Karle, J., Science 185 (1974) p. 93.CrossRefGoogle Scholar
7.Phillips, J.C., J. Non-Cryst. Solids 63 (1984) p. 347.CrossRefGoogle Scholar
8.Galeener, F.L. and Wright, A.C., Solid State Commun. 57 (1986) p. 677.CrossRefGoogle Scholar
9.Griscom, D.L., J. Non-Cryst. Solids 24 (1977) p. 155.CrossRefGoogle Scholar
10.Nicollian, E.H. and Brews, J.R. (John Wiley, New York, 1982).Google Scholar
11.Griscom, D.L., J. Non-Cryst. Solids 40 (1980) p. 211.CrossRefGoogle Scholar
12.Weeks, R.A., J. Appl. Phys. 27 (1956) p. 1376.CrossRefGoogle Scholar
13.Feigl, F.J., Fowler, W.B., and Yip, K.L., Solid State Commun. 14 (1974) p. 225.CrossRefGoogle Scholar
14.Griscom, D.L., Friebele, E.J., and Sigel, G.H. Jr., Solid State Commun. 15 (1974) p. 479.CrossRefGoogle Scholar
15.Griscom, D.L., Nucl. Instrum. Methods B1 (1984) p. 481; D.L. Griscom, M. Stapelbroek, and E.J. Friebele, J. Chem. Phys. 78 (1983) p. 1638; D.L. Griscom, J. Non-Cryst. Solids 68 (1984) p. 301.CrossRefGoogle Scholar
16.Griscom, D.L., J. Appl. Phys. 58 (1985) p. 2524.CrossRefGoogle Scholar
17.Edwards, A.H. and Fowler, W.B., Phys. Rev. B 26 (1982) p. 6649.CrossRefGoogle Scholar
18.Friebele, E.J., Griscom, D.L., Stapelbroek, M., and Weeks, R.A., Phys. Rev. Lett. 42 (1979) p. 1346; D.L. Griscom and E.J. Friebele, Phys. Rev. B 24 (1981) p. 4896.CrossRefGoogle Scholar
19.Stathis, J.H. and Kastner, M.A., Phys. Rev. B 29 (1984) p. 7079.CrossRefGoogle Scholar
20.Friebele, E.J., Askins, C.G., Gingerich, M.E., and Long, K.J., Nucl. Instrum. Methods in Phys. Res. B1 (1984) p. 355; E.J. Friebele, K.J. Long, C.G. Askins, M.E. Gingerich, M.J. Marrone, and D.L. Griscom, in Crit. Rev. Tech.: Opt. Materials in Radiation Environments (Vol. 541) edited by P. Levy and E.J. Friebele (SPIE, Vol. 541, Bellingham, WA, 1985) p. 70.CrossRefGoogle Scholar
21.Kaiser, P., J. Opt. Soc. Am. 64 (1974) p. 475; E.J. Friebele, G.H. Sigel, Jr., and D.L. Griscom, Proc. Second European Conf. on Optical Fiber Transmission (1976) p. 63; H. Hanafusa, Y. Hibino, and F. Yamamoto, J. Appl. Phys. 58 (1985) p. 1356.CrossRefGoogle Scholar
22.Griscom, D.L., Friebele, E.J., Long, K.J., and Fleming, J.W., J. Appl. Phys. 54 (1983) p. 3743.CrossRefGoogle Scholar
23.Friebele, E.J., Griscom, D.L., and Sigel, G.H. Jr., J. Appl. Phys. 45 (1974) p. 3424; E.J. Friebele and D.L. Griscom, in Defects in Glasses, edited by F.L. Galeener, D.L. Griscom, and M.J. Weber (Mater. Res. Soc. Proc. 61, Pittsburgh, PA, 1986) p. 319; H. Kawazoe, J. Non-Cryst. Solids 71 (1985) p. 231.CrossRefGoogle Scholar
24.Griscom, D.L. and Friebele, E.J., Phys. Rev. B 34 (1986) p. 7524.CrossRefGoogle Scholar