Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T14:59:24.905Z Has data issue: false hasContentIssue false

Seeing dynamic phenomena with live scanning tunneling microscopy

Published online by Cambridge University Press:  10 November 2017

Joost W.M. Frenken
Affiliation:
Advanced Research Center for Nanolithography, The Netherlands; [email protected]
Irene M.N. Groot
Affiliation:
Leiden Institute of Chemistry, Leiden University, The Netherlands; [email protected]
Get access

Abstract

Scanning tunneling microscopy (STM) is an excellent technique to image the surfaces of materials with extreme spatial resolution. However, it is difficult to maintain its imaging quality when applying the technique under the conditions used in many practical processes, such as chemical vapor deposition and catalysis. In this article, we describe two special classes of STM instruments that are capable of maintaining good imaging quality under “difficult” conditions, namely, one for high and variable temperatures and the other for the combination of high temperatures and high gas pressures. In both cases, we discuss the special design features that make these instruments robust with respect to the challenging imaging conditions and provide examples to illustrate how they are applied.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Binnig, G., Rohrer, H., Gerber, Ch., Weibel, E., Phys. Rev. Lett. 49, 57 (1982).Google Scholar
Binnig, G., Rohrer, H., Gerber, Ch., Weibel, E., Phys. Rev. Lett. 50, 120 (1983).Google Scholar
Takayanagi, K., Tnishiro, Y., Takahashi, S., Takahashi, M., Surf. Sci. 164, 367 (1985).Google Scholar
Swartzentruber, B.S., Mo, Y.-W., Kariotis, R., Lagally, M.G., Webb, M.B., Phys. Rev. Lett. 65, 1913 (1990).CrossRefGoogle Scholar
Pimpinelli, A., Villain, J., Physics of Crystal Growth (Cambridge University Press, Cambridge, UK, 1998).CrossRefGoogle Scholar
Kang, S.-J.L., Sintering: Densification, Grain Growth and Microstructure (Butterworth-Heinemann, Oxford, UK, 2005).Google Scholar
Somorjai, G.A., Li, Y., Introduction to Surface Chemistry and Catalysis, 2nd ed. (Wiley, Hoboken, NJ, USA, 2010).Google Scholar
Rahe, P., Bechstein, R., Kühnle, A., J. Vac. Sci. Technol. B 28, C4E31 (2010).Google Scholar
den Haan, A.M.J., Wijts, G.H.C.J., Galli, F., Usenko, O., van Baarle, G.J.C., van der Zalm, D.J., Oosterkamp, T.H., Rev. Sci. Instrum. 85, 035112 (2014).Google Scholar
Song, Y.J., Otte, A.F., Kuk, Y., Hu, Y., Torrance, D.B., First, P.N., de Heer, W.A., Min, H., Adam, S., Stiles, M.D., MacDonald, A.H., Stroscio, J.A., Nature 467, 185 (2010).Google Scholar
Lyding, J.W., Skala, S., Hubacek, J.S., Brockenbrough, R., Gammie, G., J. Microsc. 152, 371 (1988).Google Scholar
Moulson, A.J., Herbert, J.M., Electroceramics: Materials, Properties, Applications (Wiley, Chichester, UK, 2003).Google Scholar
Hoogeman, M.S., Glastra van Loon, D., Loos, R.W.M., Ficke, H.G., de Haas, E., van der Linden, J.J., Zeijlemaker, H., Kuipers, L., Chang, M.F., Klik, M.A.J., Frenken, J.W.M., Rev. Sci. Instrum. 69, 2072 (1998).CrossRefGoogle Scholar
Kuipers, L., Loos, R.W.M., Neerings, H., ter Horst, J., Ruwiel, G.J., de Jongh, A.P., Frenken, J.W.M., Rev. Sci. Instrum. 66, 4557 (1995).Google Scholar
Dong, G.C., van Baarle, D.W., Frenken, J.W.M., in Advances in Graphene Science, Aliofkhazraei, M., Ed. (InTech, 2013), p. 33, https://www.intechopen.com/books/advances-in-graphene-science.Google Scholar
Dong, G.C., van Baarle, D.W., Rost, M.J., Frenken, J.W.M., ACS Nano 7, 7028 (2013).Google Scholar
Dong, G.C., van Baarle, D.W., Rost, M.J., Frenken, J.W.M., New J. Phys. 14, 053033 (2012).Google Scholar
Groot, I.M.N., Frenken, J.W.M., Eds., Operando Studies in Heterogeneous Catalysis (Springer-Verlag, Berlin, Germany, 2017).Google Scholar
Herbschleb, C.T., van der Tuijn, P.C., Roobol, S., Navarro-Paredes, V., Bakker, J.W., Liu, Q., Stoltz, D., Cañas-Ventura, M.E., Verdoes, G., van Spronsen, M., Bergman, M., Crama, L., Taminiau, I., Ofitserov, A., van Baarle, G.J., Frenken, J.W.M., Rev. Sci. Instrum. 85, 083703 (2014).Google Scholar
van Spronsen, M.A., Frenken, J.W.M., Groot, I.M.N., Nat. Commun. 8, 429 (2017).Google Scholar
Hendriksen, B.L.M., Frenken, J.W.M., Phys. Rev. Lett. 89, 046101 (2002).Google Scholar
Hendriksen, B.L.M., Ackermann, M.D., Bobaru, S.C., Popa, I., Ferrer, S., Frenken, J.W.M., Nat. Chem. 2, 730 (2010).Google Scholar
Ackermann, M.D., Pedersen, T.M., Hendriksen, B.L.M., Robach, O., Bobaru, S.C., Popa, I., Quiros, C., Kim, H., Hammer, B., Ferrer, S., Frenken, J.W.M., Phys. Rev. Lett. 95, 255505 (2005).Google Scholar
Mars, P., van Krevelen, D.W., Chem. Eng. Sci. 3, 41 (1954).Google Scholar
Doornkamp, C., Ponec, V., J. Mol. Catal. A Chem. 162, 19 (2000).Google Scholar
Geerlings, J.J.C., Wilson, J.H., Kramer, G.J., Kuipers, H.P.C.E., Hoek, A., Huisman, H.M., Appl. Catal. A Gen. 186, 27 (1999).Google Scholar
Van der Laan, G.P., Beenackers, A.A.C.M., Catal. Rev. Sci. Eng. 41, 255 (1999).Google Scholar
Navarro, V., van Spronsen, M.A., Frenken, J.W.M., Nat. Chem. 8, 929 (2016).Google Scholar
Uosaki, K., Yamada, R., J. Am. Chem. Soc. 121, 4090 (1999).Google Scholar
Roobol, S.B., Cañas-Ventura, M.E., Bergman, M., van Spronsen, M.A., Onderwaater, W.G., van der Tuijn, P.C., Koehler, R., Offitserov, A., van Baarle, G.J.C., Frenken, J.W.M., Rev. Sci. Instrum. 86, 033706 (2015).Google Scholar