Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T21:20:09.993Z Has data issue: false hasContentIssue false

The science of silks

Published online by Cambridge University Press:  14 January 2013

F. Vollrath
Affiliation:
Department of Zoology, University of Oxford, UK; [email protected]
D. Porter
Affiliation:
Department of Zoology, University of Oxford, UK; [email protected]
C. Holland
Affiliation:
Department of Zoology, University of Oxford, UK, and Department of Materials Science and Engineering, University of Sheffield, UK; [email protected]
Get access

Abstract

Comparative silk research has begun to provide us with valuable insights into a class of biopolymers that have evolved an enormous range of material performance based on highly adapted structure-property interactions. As outlined in this article, such insights cover the analysis of biological and bioinspired spinning technologies, the discovery of a novel type of melt spinning at ambient temperatures, and an advanced predictive modeling framework that uses ab initio calculations. Importantly, the huge diversity and extensive range of material properties found in natural silks is providing a fertile field for discoveries that could change the polymer paradigm and our approach to using proteins as structural materials. For example, highly relevant to both sustainability and engineering properties is the role of water in silk processing and function, as this article will explore in some detail.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altman, G.H., Diaz, F., Jakuba, C.. Calabro, T., Horan, R.L., Chen, J.S., Lu, H., Richmond, J., Kaplan, D.L., Biomaterials, 24, 401 (2003).Google Scholar
Omenetto, F.G., Kaplan, D.L., Science 329, 528 (2010).CrossRefGoogle Scholar
Vollrath, F., Porter, D., Holland, C., Soft Matter 7, 9595 (2011).Google Scholar
Holland, C., Vollrath, F., in Biologically Inspired Textiles, Ellison, M.S., Abbott, A.G., Eds. (Woodhead Publishing, Cambridge, UK, 2008).Google Scholar
Sutherland, T.D., Young, J.H., Weisman, S., Hayashi, C.Y., Merritt, D.J., Annu. Rev. Entomol. 55, 171 (2010).CrossRefGoogle Scholar
Eisoldt, L., Smith, A., Scheibel, T., Mater. Today 14, 80 (2011).CrossRefGoogle Scholar
Vollrath, F., Curr. Biol. 15, 364 (2005).CrossRefGoogle Scholar
Chen, F., Porter, D., Vollrath, F., J. R. Soc. Interface 9 (74), 2299 (2012).Google Scholar
Holland, C.A., Terry, A.E., Porter, D., Vollrath, F., Nat. Mater. 5, 870 (2006).CrossRefGoogle Scholar
Vollrath, F., Knight, D.P., Nature 410, 541 (2001).Google Scholar
Dicko, C., Porter, D., Bond, J.E., Kenney, J.M., Vollrath, F., Biomacromolecules (2007).Google Scholar
Dicko, C., Kenney, J.M., Vollrath, F., in Advances in Protein Chemistry, Kajava, A., Squire, J.M., Parry, D.A.D., Eds. (Elsevier, NY, 2006), vol. 73, pp. 1753.Google Scholar
Vollrath, F., Porter, D., Soft Matter 2, 377 (2006).Google Scholar
Lucas, F., Rudall, K., Compr. Biochem. 26 (B), 475 (1968).Google Scholar
Hayashi, C.Y., Lewis, R.V., Science 287, 1477 (2000).CrossRefGoogle Scholar
Yonemura, N., Sehnal, F.E., J. Mol. Evol. 63, 42 (2006).Google Scholar
Asakura, T., Umemura, K., Nakazawa, Y., Hirose, H., Higham, J., Knight, D., Biomacromolecules 8, 175 (2007).CrossRefGoogle Scholar
Moriya, M., Roschzttardtz, F., Nakahara, Y., Saito, H., Masubuchi, Y., Asakura, T., Biomacromolecules 10, 929 (2009).Google Scholar
Holland, C., Porter, D., Vollrath, F., Biopolymers 97, 362 (2012).Google Scholar
Holland, C., Vollrath, F., Ryan, A.J., Mykhaylyk, O.O., Adv. Mater. 24, 105 (2012).Google Scholar
Chen, F., Porter, D., Vollrath, F., Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 82, 041911 (2010).CrossRefGoogle Scholar
Vollrath, F., Porter, D., Polymer 50, 5623 (2009).Google Scholar
Liu, Y., Sponner, A., Porter, D., Vollrath, F., Biomacromolecules 12 (11), 4030 (2007).Google Scholar
Vollrath, F., Madsen, B., Shao, Z., Proc. R. Soc. 268, 2339 (2001).Google Scholar
Shao, Z.Z., Vollrath, F., Nature 418, 741 (2002).Google Scholar
Riekel, C., Madsen, B., Knight, D., Vollrath, F., Biomacromolecules 1, 622 (2000).CrossRefGoogle Scholar
Riekel, C., Vollrath, F., Int. J. Biol. Macromol. 29, 203 (2001).Google Scholar
Young, R.J., Sirichaisit, J., Shao, Z., Vollrath, F., in The New Polymers: Science, Technology and Applications (Institute of Physics, London, 1998).Google Scholar
Knight, D.P., Knight, M.M., Vollrath, F., Int. J. Biol. Macromol. 27, 205 (2000).CrossRefGoogle Scholar
Craig, C., Annu. Rev. Entomol. 42, 231 (1997).Google Scholar
Knight, D., Vollrath, F., Tissue Cell 31, 617 (1999).Google Scholar
Akai, H., J. Seric. Sci. Jpn. 55, 163 (1986).Google Scholar
Porter, D., Vollrath, F., Adv. Mater. 21, 487 (2009).Google Scholar
Magoshi, J., Magoshi, Y., Nakamura, S., Appl. Polym. Symp. 41, 187 (1985).Google Scholar
Akai, H., Imai, T., Tsubouchi, K., J. Seric. Sci. Jpn. 56, 131 (1987).Google Scholar
Viney, C., Supramol. Sci. 4, 75 (1997).Google Scholar
Knight, D.P., Vollrath, F., Proc. R. Soc. London, Ser. B 266, 519 (1999).CrossRefGoogle Scholar
Asakura, T., Yao, J., Yang, M., Zhu, Z., Hirose, H., Polymer 48, 2064 (2007).Google Scholar
Chen, G.-Y., Cuculo, J.A., Tucker, P.A., J. Polym. Sci., Part B: Polym. Phys. 30, 557 (1992).CrossRefGoogle Scholar
Kerkam, K., Viney, C., Kaplan, D., Lombardi, S., Nature 349, 596 (1991).CrossRefGoogle Scholar
Zhong, X., Zhou, P., Shao, Z.Z., Chen, S.M., Chen, X., Hu, B.W., Deng, F., Yao, W.H., Biochemistry 43, 11932 (2004).Google Scholar
Magoshi, J., Magoshi, Y., Kato, M., Becker, M.A., Nakamura, S., Abstr. Pap. Am. Chem. Soc. 214, 209 (1997).Google Scholar
Dicko, C., Kenney, J.M., Knight, D., Vollrath, F., Biochemistry 43, 14080 (2004).Google Scholar
Dicko, C., Knight, D., Kenney, J.M., Vollrath, F., Biomacromolecules 5, 758 (2004).CrossRefGoogle Scholar
Dicko, C., Knight, D., Vollrath, F., Kenney, J.M., Biochemistry 43, 14080 (2004).CrossRefGoogle Scholar
Foo, C.W.P., Bini, E., Hensman, J., Knight, D.P., Lewis, R.V., Kaplan, D.L., Appl. Phys. A 82, 223 (2006).Google Scholar
Vollrath, F., Knight, D.P., Hu, X.W., Proc. R. Soc. London, Ser. B 265, 817 (1998).CrossRefGoogle Scholar
Dicko, C., Vollrath, F., Kenney, J.M., Biomacromolecules 5, 704 (2004).Google Scholar
Knight, D.P., Vollrath, F., Naturwissenschaften 88, 179 (2001).Google Scholar
Meyer, K.H., Jeannerat, J., Helv. Chim. Acta 22, 22 (1939).Google Scholar
Ochi, A., Nemoto, N., Magoshi, J., Ohyama, E., Hossain, K.S., J. Soc. Rheol. Jpn. 30, 289 (2002).CrossRefGoogle Scholar
Terry, A.E., Knight, D.P., Porter, D., Vollrath, F., Biomacromolecules 5, 768 (2004).Google Scholar
Kojic, N., Bico, J., Clasen, C., McKinley, G.H., J. Exp. Biol. 209, 4355 (2006).Google Scholar
Moriya, M., Ohgo, K., Masubuchi, Y., Asakura, T., Polymer 49, 952 (2008).Google Scholar
Boulet-Audet, M., Vollrath, F., Holland, C., Phys. Chem. Chem. Phys. 13, 3979 (2011).Google Scholar
Holland, C., Urbach, J.S., Blair, D.L., Soft Matter 8, 2590 (2012).Google Scholar
Holland, C., Terry, A.E., Porter, D., Vollrath, F., Polymer 48, 3388 (2007).Google Scholar
Ohgo, K., Bagusat, F., Asakura, T., Scheler, U., J. Am. Chem. Soc. 130, 4182 (2008).Google Scholar
Rössle, M., Panine, P., Urban, V.S., Riekel, C., Biopolymers 74, 316 (2004).Google Scholar
Arevalo, R.C., Urbach, J.S., Blair, D.L., Biophys. J. 99, L65 (2010).CrossRefGoogle Scholar
Schmoller, K.M., Fernandez, P., Arevalo, R.C., Blair, D.L., Bausch, A.R., Nat. Commun. 1, 134 (2010).Google Scholar
Putthanarat, S., Stribeck, N., Fossey, S.A., Eby, R.K., Adams, W.W., Polymer 41, 7735 (2000).CrossRefGoogle Scholar
Poza, P., Perez-Rigueiro, J., Elices, M., Llorca, J., Eng. Fract. Mech. 69, 1035 (2002).CrossRefGoogle Scholar
Hakimi, O., Knight, D.P., Knight, M.M., Grahn, M.F., Vadgama, P., Biomacromolecules 7, 2901 (2006).Google Scholar
Guan, J., Porter, D., Vollrath, F., Polymer 53 (13), 2717 (2012).Google Scholar
Drodge, D.R., Mortimer, B., Holland, C., Siviour, C.R., J. Mech. Phys. Solids 60 (10), 1710 (2012).CrossRefGoogle Scholar
Tsukada, M., Freddi, G., Crighton, J.S., J. Polym. Sci. Pol. Phys. 32, 243 (1994).Google Scholar
Mykhaylyk, O.O., Soft Matter 6, 4430 (2010).CrossRefGoogle Scholar
Porter, D., Vollrath, F., Soft Matter 4, 328 (2008).Google Scholar
Porter, D., Vollrath, F., Biochim. Biophys. Acta 1824 (6), 785 (2012).Google Scholar
Vollrath, F., Porter, D., Holland, C., Soft Matter 7, 9595 (2011).Google Scholar
Fu, C., Shao, Z., Fritz, V., Chem. Commun. 6515 (2009).Google Scholar
Chung, H., Kim, T.Y., Lee, S.Y., Curr. Opin. Biotechnol. 23, 957 (2012).Google Scholar
Hudspeth, M., Nie, X., Chen, W., Lewis, R., Biomacromolecules 13 (8), 2240 (2012).Google Scholar
Porter, D., Guan, J., Vollrath, F., Adv. Mat., in press (2013), doi 10.1002/adma.201204158.Google Scholar
Chen, F., Porter, D., Vollrath, F., Acta Biomater. 8 (7), 2620 (2011).Google Scholar
Termonia, Y., Macromolecules 27, 7378 (1994).Google Scholar
Keten, S., Xu, Z., Ihle, B., Buehler, M.J., Nat. Mater. 9 (4), 359 (2010).Google Scholar
Porter, D., Vollrath, F., Biochim. Biophys. Acta 1824 (6), 785 (2012).CrossRefGoogle Scholar
Porter, D., Vollrath, F., Nanotoday 2, 6 (2007).Google Scholar
Porter, D., Vollrath, F., Shao, J.Z., Eur. Phys. J. E 16, 199 (2005).Google Scholar
Blackledge, T.A., Boutry, C., Wong, S.C., Baji, A., Dhinojwala, A., Sahni, V., Agnarsson, I., J. Exp. Biol. 212 (Pt. 13), 1981 (2009).Google Scholar
Sutherland, T.D., Campbell, P.M., Weisman, S., Trueman, H.E., Sriskantha, A., Wanjura, W.J., Haritos, V.S., Genome Res. 16 (11), 1414 (2006).Google Scholar
Xia, X.-X., Qian, Z.G., Ki, C.S., Park, Y.H., Kaplan, D.L., Lee, S.Y., Proc. Natl. Acad. Sci. U.S.A. 107 (32), 14059 (2010).Google Scholar
Lazaris, A., Arcidiacono, S., Huang, Y., Zhou, J.F., Duguay, F., Chretien, N., Welsh, E.A., Soares, J.W., Karatzas, C.N., Science 295, 472 (2002).Google Scholar
Yan, J., Zhou, G., Knight, D.P., Shao, Z., Chen, X., Biomacromolecules 11 (1), 1 (2009).Google Scholar
Pauli, G., The Blue Economy (Paradigm Publications, Taos, NM, 2010), p. 336.Google Scholar
Kenney, J.M., Knight, D., Wise, M.J., Vollrath, F., Eur. J. Biochem. 269, 4159 (2002).Google Scholar
Wynne, A., Textiles, The Motivate Series (Macmillan Education, Oxford, UK, 1997).Google Scholar
Huang, W., Begum, R., Barber, T., Ibba, V., Tee, N.C., Hussain, M., Arastoo, M., Yang, Q., Robson, L.G., Lesage, S., Gheysens, T., Skaer, N.J., Knight, D.P., Priestley, J.V., Biomaterials, 33 (1), 59 (2012).Google Scholar
Chaudhury, S., Holland, C., Thompson, M., Vollrath, F., Carr, A., JBJS, 21 (9), 1168 (2011).Google Scholar