Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-21T21:40:13.844Z Has data issue: false hasContentIssue false

Science and Applications of Mixed Conductors for Lithium Batteries

Published online by Cambridge University Press:  31 January 2011

Get access

Introduction

Mixed conductors show significant mobility of both electronic and ionic species and were the subject of an earlier review in MRS Bulletin.1 The current review is restricted to those mixed conductors of interest for use in lithium batteries, with an emphasis on commercialization. The first lithium batteries were primary cells using pure lithium anodes and carbon monofluoride or manganese oxide as the cathode. Both were developed in Japan, the former for use in fishing floats and the latter for calculators and similar small devices. Such primary cells based mainly on MnO2 or FeS2 cathodes are still extensively used in watches, cameras, and so on. Lithium primary cells are also the main power source for many medical devices, such as pacemakers. In some of these applications, silver vanadate is the cathode.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Whittingham, M.S., MRS Bull. XIV (9) (1989) p. 31.CrossRefGoogle Scholar
2.Whittingham, M.S., J. Electrochem. Soc. 123 (1976) p. 315.CrossRefGoogle Scholar
3.Rao, B.M.L., Francis, R.W., and Christopher, H.A., J. Electrochem. Soc. 124 (1977) p. 1490.Google Scholar
4.Gaines, L.H., Francis, R.W., Newman, G.H., and Rao, B.M.L., in 11th Intersociety Energy Conversion Conf., Stateline, NV, 1976, p.Google Scholar
5.Ozawa, K., Solid State Ionics 69 (1994) p. 212.CrossRefGoogle Scholar
6.Dahn, J.R., Sleigh, A.K., Shi, H., Way, B.M., Weydanz, W.J., Reimers, J.N., Zhong, Q., and von Sacken, U., in Lithium Batteries, edited by Pistoia, G. (Elsevier, Amsterdam, 1994) p. 1.Google Scholar
7.Winter, M., Besenhard, J.O., Spahr, M.E., and Novak, P., Adv. Mater. 10 (1998) p. 725.Google Scholar
8.Idota, Y., Kubota, T., Matsufiji, A., Maekawa, Y., and Miyasaka, T., Science 276 (1997) p. 1395.CrossRefGoogle Scholar
9.Courtney, I.A. and Dahn, J.R., J. Electrochem. Soc. 144 (1997) p. 2045.CrossRefGoogle Scholar
10.Besenhard, J.O., Yang, J., and Winter, M., J. Power Sources 68 (1997) p. 87.Google Scholar
11.Thackeray, M.M., Johnson, C.S., Kahaian, A.J., Kepler, K.D., Vaughey, J.T., Shao-Horn, Y., and Hackney, S.A., ITE Battery Lett. 1 (1999) p. 26.Google Scholar
12.Mao, O., Turner, R.L., Courtney, I.A., Fredericksen, B.D., Buckett, M.I., Krause, L.J., and Dahn, J.R., Electrochem. Solid-State Lett. 2 (1999) p. 3.Google Scholar
13.Kepler, K.D., Vaughey, J.T., and Thackeray, M.M., Electrochem. Solid-State Lett. 2 (1999) p. 307.CrossRefGoogle Scholar
14.Thackeray, M.M., Vaughey, J.T., Kahaian, A.J., Kepler, K.D., and Benedek, R., Electrochem. Commun. 1 (1999) p. 111.CrossRefGoogle Scholar
15.Vaughey, J.T., Kepler, K.D., Benedek, R., and Thackeray, M.M., Electrochem. Commun. 1 (1999) p. 517.Google Scholar
16.Vaughey, J.T., O'Hara, J., and Thackeray, M.M., Electrochem. Solid-State Lett. 3 (2000) p. 13.Google Scholar
17.Whittingham, M.S., Science 192 (1976) p. 1126.CrossRefGoogle Scholar
18.Whittingham, M.S., Prog. Solid State Chem. 12 (1978) p. 41.Google Scholar
19.Murphy, D.W., Christian, P.A., DiSalvo, F.J., and Carides, J.N., J. Electrochem. Soc. 126 (1979) p. 497.CrossRefGoogle Scholar
20.Mitzushima, K., Jones, P.C., Wiseman, P.J., and Goodenough, J.B., Mater. Res. Bull. 15 (1980) p. 783.CrossRefGoogle Scholar
21.Amatucci, G.G., Tarascon, J.M., and Klein, L.C., J. Electrochem. Soc. 143 (1996) p. 1114.Google Scholar
22.Ohzuku, T. and Ueda, A., Solid State Ionics 69 (1994) p. 201.Google Scholar
23.Dahn, J.R., Fuller, E.W., Obrovac, M., and von Sacken, U., Solid State Ionics 69 (1994) p. 265.CrossRefGoogle Scholar
24.Ebner, W., Fouchard, D., and Xie, L., Solid State Ionics 69 (1994) p. 238.CrossRefGoogle Scholar
25.Thomas, M.G.S.R., David, W.I.F., and Goodenough, J.B., Mater. Res. Bull. 20 (1985) p. 1137.Google Scholar
26.Reimers, J.N. and Dahn, J.R., Phys. Rev. B: Condens. Matter 46 (1992) p. 3236.Google Scholar
27.Delmas, C. and Saadonne, I., Solid State Ionics 53–56 (1992) p. 370.CrossRefGoogle Scholar
28.Sharma, P., Moore, G., Zhang, F., Zavalij, P.Y., and Whittingham, M.S., Electrochem. Solid-State Lett. 2 (1999) p. 494.Google Scholar
29.Goodenough, J.B., award address, Electrochemical Society Hawaii Meeting (1999).Google Scholar
30.Doeff, M.M., Richardson, T.J., and Kepley, L., J. Electrochem. Soc. 143 (1996) p. 2507.Google Scholar
31.Whittingham, M.S., in Lithium Batteries, edited by Yamamoto, O. and Wakihara, M. (Kodansha, Tokyo, 1998).Google Scholar
32.Chen, R. and Whittingham, M.S., J. Electrochem. Soc. 144 (1997) p. L64.CrossRefGoogle Scholar
33.Whittingham, M.S., Electrochem. Soc. Proc. 99–13 (1999) p. 1.Google Scholar
34.Zavalij, P.Y., Zhang, F., and Whittingham, M.S., Acta Crystallogr., Sect. C 53 (1997) p. 1738.Google Scholar
35.Armstrong, A.R., Gitzendanner, R., Robertson, A.D., and Bruce, P.G., Chem. Commun. (1998) p. 1833.Google Scholar
36.Whittingham, M.S. and Zavalij, P.Y., Solid State Ionics in press.Google Scholar
37.Aydinol, M.K., Van der Ven, A., and Ceder, G., in Materials for Electrochemical Energy Storage and Conversion II—Batteries, Capacitors and Fuel Cells, edited by Ginley, D.S., Doughty, D.H., Scrosati, B., Takamura, T., and Zhang, Z. (Mater. Res. Soc. Symp. Proc. 496, Warrendale, PA, 1998) p. 65.Google Scholar
38.Whittingham, M.S., Zavalij, P., Zhang, F., Sharma, P., and Moore, G., Electrochem. Soc. Proc. 99–13 (1999) p. 1.Google Scholar
39.Zhang, F., Zavalij, P.Y., and Whittingham, M.S., Electrochem. Commun. 1 (1999) p. 564.Google Scholar
40.Zhang, F., Zavalij, P.Y., and Whittingham, M.S., J. Mater. Chem. 9 (1999) p. 3137.CrossRefGoogle Scholar
41.Zhang, F. and Whittingham, M.S., Electrochem. Commun. 2 (2000) p. 69.Google Scholar
42.Padhi, A.K., Nanjundaswamy, K.S., and Goodenough, J.B., J. Electrochem. Soc. 144 (1997) p. 1188.Google Scholar
43.Ravet, N., Goodenough, J.B., Besner, S., Simoneau, M., Hovington, P., and Armand, M., Electrochem. Soc. Abstr. 99–2 (1999) p. 127.Google Scholar
44.Wilhelmi, K.A., Waltersson, K., and Kihlborg, L., Acta Chem. Scand. 25 (1971) p. 2675.CrossRefGoogle Scholar
45.Abrahams, K.M., Goldman, J.L., and Dempsey, M.D., J. Electrochem. Soc. 128 (1981) p. 2493.CrossRefGoogle Scholar
46.West, K., Zachau-Christiansen, B., Jacobsen, T., and Atlung, S., J. Power Sources 14 (1985) p. 235.Google Scholar
47.Gustafsson, T., Thomas, J.O., Koksbang, R., and Farrington, G.C., Electrochim. Acta 37 (1992) p. 1639.CrossRefGoogle Scholar
48.Hirshfeld, F.L., Acta Crystallogr., Sect. B 27 (1971) p. 769.CrossRefGoogle Scholar
49.Bergström, Ö., Gustafsson, T., and Thomas, J.O., Acta Crystallogr., Sect. C 53 (1997) p. 528.Google Scholar
50.Aydinol, M.K., Kohan, A.F., Ceder, G., Cho, K., and Joannopoulos, J., Phys. Rev. B: Condens. Matter 56 (1997) p. 1354.Google Scholar
51.Bergström, Ö., Andersson, A.M., Edström, K., and Gustafsson, T., J. Appl. Crystallogr. 31 (1998) p. 823.Google Scholar
52.Berg, H., Rundlöf, H., and Thomas, J.O. (unpublished).Google Scholar