Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T03:30:10.185Z Has data issue: false hasContentIssue false

Roll-to-roll production of transparent conductive films using metallic grids

Published online by Cambridge University Press:  20 October 2011

Jasmin Woerle
Affiliation:
PolyIC, Germany; [email protected]
Henning Rost
Affiliation:
PolyIC, Germany; [email protected]
Get access

Abstract

A number of applications such as displays, touch sensors, and ultrathin heating elements contain flexible and optically transparent plastic films covered with highly electrically conductive coatings. In most cases, indium tin oxide (ITO) is used as the conductive material for these coatings due to its additional property of being transparent to visible light. Once deposited onto the foil, ITO has to be patterned before use, which is generally a tricky, time-consuming, and costly process. A newly developed economical roll-to-roll printing process utilizing metallic grids now offers a direct print alternative with better functional characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Rost, H., Plast. Eur. 10, 208 (2005).Google Scholar
2.Rost, H., Clemens, W., Industrial + Speciality Printing 9/10, 30 (2010).Google Scholar
3.Ludwig, K., Rost, H., Kunstst. Int. 6, 42 (2011).Google Scholar
4.Rost, H., Mildner, W., Kunstst. Int. 6, 60 (2008).Google Scholar
5.Geng, H.-Z., Kim, K.K., So, K.P., Lee, Y.S., Chang, Y., Lee, Y.H., J. Am. Chem. Soc. 129, 7758 (2007).CrossRefGoogle Scholar
6.Saran, N., Parikh, K., Suh, D.-S., Muñoz, E., Kolla, H., Manohar, S.K., J. Am. Chem. Soc. 126 (14), 4462 (2004).Google Scholar
7.Kuenzel, R., Pophusen, D.W., Kunststoffe 3, 86 (2011).Google Scholar
8.George, J., Menon, C.S., Surf. Coat. Technol. 132 (1), 45 (2000).Google Scholar
9.Kerkache, L., Layadi, A., Dogheche, E., Renniens, D., J. Phys. D: Appl. Phys. 39, 184 (2006).Google Scholar
10.Huber, D., Pulker, H.K., Vak. Forsch. Prax. 21 (3), 29 (2009).CrossRefGoogle Scholar
11.Maki, K., Komiya, N., Suzuki, A., Thin Solid Films 445 (2), 224 (2003).Google Scholar
12.Komai, M., Hotta, I., Moriyama, S., JP 2011067950 (2011).Google Scholar
13.Jablonski, G.A., Mastropietro, M.A., Wargo, C.J., WO 2008048316 (A2) (2008).Google Scholar
14.Saran, N., Parikh, K., Suh, D.-S., Muñoz, E., Kolla, H., Manohar, S.K., J. Am. Chem. Soc. 126 (14), 4462 (2004).CrossRefGoogle Scholar
15.Rost, H., Ficker, J., Sanchez Alonso, J., Leenders, L., McCulloch, I., Synth. Metals 145 (1), 83 (2004).CrossRefGoogle Scholar
16.Aernouts, T., Vanlaeke, P., Geens, W., Poortmans, J., Heremans, P., Borghs, S., Mertens, R., Andriessen, R., Leenders, L., Thin Solid Films 451, 22 (2004).CrossRefGoogle Scholar
17.Van Hunsel, J., Coppens, P., Deprez, L., Odeurs, R., Vandenbergh, D., Proc. International Conference on the Physics of Semiconductors 177 (1998).Google Scholar
19.Mackey, B., SID 11 Digest 43.1, 617 (2011).Google Scholar
20.Fix, W., Knobloch, A., Ullmann, A., Woerle, J., WO 2010108692 (A2) (2010).Google Scholar