Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-06T07:55:10.110Z Has data issue: false hasContentIssue false

Recent Developments in Aggregation Kinetics

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Colloidal aggregation is a very old field of research. The basic mechanism that controls the stability of colloidal solutions has been described in the celebrated papers of Derjaguin, Landau, Verwey, and Overbeek (DLVO), and indeed the prevention of undesired aggregation is one of the primary concerns in many industrial processes involving colloids. In the last 10 years a resurgence of interest in aggregation rather than in stability has been spurred by a number of fortuitous coincidences. Both through simulations and experiments, it was realized that colloidal aggregates exhibit a fractal nature. More importantly, it was found that there are two universal modes of aggregation, irrespective of the type of colloidal system. The aggregates grown according to these modes have different fractal dimensions, different reaction kinetics, and different mass distributions. The two modes are called diffusion-limited cluster aggregation (DLCA) and reaction-limited cluster aggregation (RLCA), according to whether the probability that a bond formed as a consequence of an encounter is equal to, or much smaller than one, respectively. The study of these limiting cases has been the object of extensive studies in the late 1980s, and many of the features of these modes are by now well understood.

This article describes some recent results in the area of colloidal aggregation. Although we present mostly static light-scattering data from our laboratory, connections to similar work from other groups are also discussed. For the convenience of the reader, we start by recalling some of the relevant features of both DLCA and RLCA.

Type
Mesoscopic Disorder
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Derjaguin, B.V. and Landau, L., Acta Physiochim. USSR 14 (1941) p. 633.Google Scholar
2.Derjaguin, B.V. and Landau, L., Zh. Eksp. Teor. Viz. [Son Phys. JETP] 11 (1941) p. 802.Google Scholar
3.Verwey, E.J.W. and Overbeek, J.T.G., Theory of the Stability of Lyophobic Colloids, (Elsevier, New York, 1948).Google Scholar
4.Meakin, P., Phys. Rev. Lett. 51 (1983) p. 1119.CrossRefGoogle Scholar
5.Kolb, M., Botet, R., and Jullien, R., Phys. Rev. Lett. 51 (1983) p. 123.Google Scholar
6.Brown, W.D. and Ball, R.C., J. Phys. A 18 (1985) p. L517.Google Scholar
7.Weitz, D.A. and Oliveria, M., Phys. Rev. Lett. 52 (1984) p. 1433.CrossRefGoogle Scholar
8.Ball, R.C., Weitz, D.A., Witten, T.A., and Leyvraz, F., Phys. Rev. Lett. 58 (1987) p. 274.CrossRefGoogle Scholar
9.Lin, M.Y., Lindsay, H.M., Weitz, D.A., Ball, R.C., Klein, R., and Meakin, P., Proc. R. Soc. London, Ser. A 423 (1989) p. 71.Google Scholar
10.Lin, M.Y., Lindsay, H.M., Weitz, D.A., Ball, R.C., Klein, R., and Meakin, P., Phys. Rev. A 41 (1990) p. 2005.CrossRefGoogle Scholar
11.Lin, M.Y., Lindsay, H.M., Weitz, D.A., Klein, R., Ball, R.C., and Meakin, P., J. Phys.: Conden. Matter 2 (1990) p. 3093.Google Scholar
12.Dietler, G., Aubert, C., Cannell, D.S., and Wiltzius, P., Phys. Rev. Lett. 57 (1986) p. 3117.CrossRefGoogle Scholar
13.Carpineti, M., Ferri, F., Giglio, M., Paganini, E., Perini, U., Phys. Rev. A 42 (1990) p. 7347.CrossRefGoogle Scholar
14.Broide, M.L. and Cohen, R.J., Phys. Rev. Lett. 64 (1990) p. 2026.CrossRefGoogle Scholar
15.van Dongen, P.G.J. and Ernst, M.H., Phys. Rev. Lett., 54 (1985) p. 1396.CrossRefGoogle Scholar
16.von Schulthess, G.K., Benedek, G.B., and De Blois, R.W., Macromolecules 13 (1980) p. 939.CrossRefGoogle Scholar
17.Sinha, S.K., Phys. D 38 (1989) p. 310.Google Scholar
18.Fisher, M.E. and Burford, R.J., Phys. Rev. A 156 (1967) p. 583.CrossRefGoogle Scholar
19.Asnaghi, D., Carpineti, M., Giglio, M., and Sozzi, M., Phys. Rev. A 45 (1992) p. 1018.CrossRefGoogle Scholar
20.Weitz, D.A., Huang, J.S., Lin, M.Y., and Sung, J., Phys. Rev. Lett. 54 (1985) p. 1416.CrossRefGoogle Scholar
21.Meakin, P. and Family, F., Phys. Rev. A 38 (1988) p. 2110.CrossRefGoogle Scholar
22.Robinson, D.J. and Earnshaw, J.C., Phys. Rev. A 46 (1992) p. 2065.CrossRefGoogle Scholar
23.Family, F., Meakin, P., and Vicsek, T., J. Chem. Phys. 83 (1985) p. 4144.CrossRefGoogle Scholar
24.Kolb, M. and Jullien, R., J. Phys. (Paris) Lett. 45 (1984) p. L977.CrossRefGoogle Scholar
25.Carpineti, M. and Giglio, M., Phys. Rev. Lett. 68 (1992) p. 3327.CrossRefGoogle Scholar
26.Banfi, G.P, Degiorgio, V., Rennie, A.R., and Barker, J.G., Phys. Rev. Lett. 69 (1992) p. 3401.CrossRefGoogle Scholar
27.Rennie, A.R., Degiorgio, V., and Banfi, G.P., Phys. B 180 and 181 (1992) p. 509.Google Scholar
28.Marro, J., Lebowitz, J.L., and Kalos, M.H., Phys. Rev. Lett. 43 (1979) p. 282.CrossRefGoogle Scholar
29.Furukawa, H., Adv. Phys. 34 (1985) p. 703.CrossRefGoogle Scholar
30.Binder, K. and Stauffer, D., Phys. Rev. Lett. 33 (1974) p. 1006.CrossRefGoogle Scholar
31.Bibette, J., Mason, T.G., Gang, H., and Weitz, D.A., Phys. Rev. Lett. 69 (1992) p. 981.CrossRefGoogle Scholar
32.Schätzel, K. and Ackerson, B.J., Phys. Rev. Lett. 68 (1992) p. 337.CrossRefGoogle Scholar
33.Viovy, J.L., Beysens, D., and Knobler, C.M., Phys. Rev. A 37 (1988) p. 4965.CrossRefGoogle Scholar
34.Carpineti, M. and Giglio, M., Phys. Rev. Lett. 70 (1993) p. 3828.CrossRefGoogle Scholar
35.Vailati, A., Asnaghi, D., Giglio, M., and Piazza, R., Phys. Rev. E 48 (1993) p. R2358.Google Scholar
36.Robinson, D.J. and Earnshaw, J.C., Phys. Rev. Lett. 71 (1993) p. 715.CrossRefGoogle Scholar